
 Medusa Labs Test Tools Suite
Version 7.0

User’s Guide

Notice
Every effort was made to ensure that the information in this document was accurate at the time of printing.
However, information is subject to change without notice, and JDSU reserves the right to provide an
addendum to this document with information not available at the time that this document was created.
This document was published in November 2014.

Copyright
© Copyright 2014 JDS Uniphase Corporation. All rights reserved. No part of this guide may be reproduced
or transmitted electronically or otherwise without written permission of the publisher.

JDS Uniphase Corporation
430 N. McCarthy Blvd.
Milpitas, CA 95035 USA

Trademarks
JDSU and Medusa Labs Test Tools are trademarks or registered trademarks of JDS Uniphase Corporation
in the United States and/or other countries.

Specifications, terms, and conditions are subject to change without notice. All trademarks and registered
trademarks are the property of their respective companies.

Support and Maintenance

Technical Support:

Contacting Medusa Labs

You can contact Medusa Labs Monday through Friday, 8 a.m. to 5 p.m. Central Time.

Terms and Conditions

Specifications, terms, and conditions are subject to change without notice. The provision of
hardware, services, and/or software are subject to JDSU’s standard terms and conditions,
available at www.jdsu.com/terms.

Telephone:

E-mail:

US Toll Free: 1 855 ASK-JDSU, select 3, 3, 3
1 301 353-1560, select 3

E-mail: techsupport-snt@jdsu.com

Medusa Labs, 800 Paloma Drive, Suite 130, Round Rock, TX 78665

Phone: (512) 670-7300 E-mail: techsupport-medusa@jdsu.com

Fax: (512) 670-5078 Website: www.jdsu.com/go/medusa

Contents
iii

Contents

About this Guide .. 1
What this Guide Contains.. 1
Conventions... 2

Message Formats .. 2
Typographical Conventions.. 2

Chapter 1
About Medusa Labs Test Tools .. 3

What’s New in this Medusa Labs Test Tools Version .. 4
What Medusa Labs Test Tools Does... 5
How Medusa Labs Test Tools Works ... 6
Pain and Maim Test Tools... 6
Sock Test Tool... 6
Catapult Test Tool Automation... 7
FindLBA Utility .. 7
GetKey Utility ... 7
Medusa Agent.. 7
Licensing ... 8

Licensing Requirements ... 10
Virtual Machine Licensing ... 10
Remote Checkout.. 12
Migrating the MLM License Server ... 13

System Requirements .. 13
System Limitations ... 14
Memory Utilization... 14
Processor Utilization... 15
Firewalls.. 15
Operating System Restrictions.. 15

Testing Concepts ... 17
Target Considerations ... 17
Protocol Analyzers.. 18
TraceView Support ... 18

Chapter 2
Using the Graphical User Interface.. 19

Using the Medusa Labs Test Tools GUI ... 20
Launching the Medusa Labs Test Tools ... 20
Setting Up a Performance Test ... 20

Medusa Labs Test Tools GUI ... 23
GUI Overview... 23

Medusa Labs Test Tools Menus.. 25
File Menu.. 25
View Menu ... 26
Help Menu .. 27

Test Planning Tab.. 28
Targets Area.. 28
Configurations Area.. 32
Test Plans Area ... 34
iv Medusa Labs Test Tools Suite

Contents

Test Running Tab .. 45
Test List and Statistics Pane ... 46
Text View Pane... 47
Graph View Pane .. 48
Speedometers Pane ... 49

Test Analysis Tab.. 50
History Summaries Pane... 51
History Tests Pane ... 52
History Information Pane ... 53

Chapter 3
Using the Configuration Editors... 61

Using the Configuration Editors within the GUI .. 62
New Configuration Button.. 62

Configuration Editors .. 65
Test a Range Controls... 65

Custom Configuration Editor .. 66
General Tab... 67
I/O Payload Tab .. 68
I/O Behavior Tab .. 72
Advanced I/O Tab... 75
Patterns Tab .. 75
Comments Tab.. 79
Command Lines Tab... 79

Integrity Configuration Editor... 80
General Tab... 80
I/O Payload Tab .. 81
I/O Behavior Tab .. 84
Patterns Tab .. 86
Comments Tab.. 89
Command Lines Tab... 90

Performance Configuration Editor .. 91
General Tab... 91
I/O Payload Tab .. 92
Comments Tab.. 96
Command Lines Tab... 96

Storage CLI Configuration Editor .. 97
Command Line Tab ... 97
Comments Tab ... 97

Socket Configuration Editor.. 98
General Tab... 98
I/O Payload Tab .. 99
I/O Behavior Tab .. 102
Advanced I/O Tab... 104
Patterns Tab .. 105
Comments Tab.. 108
Command Lines Tab... 108
Medusa Labs Test Tools Suite v

Contents

TCP App Simulation Configuration Editor... 109
General Tab... 109
I/O Payload Tab .. 110
I/O Behavior Tab .. 112
Patterns Tab .. 114
Comments Tab.. 116
Command Lines Tab... 117

Network CLI Configuration Editor ... 118
Command Line Tab ... 118
Comments Tab ... 118

SSD Secure Erase Configuration Editor ... 119
SE Operation Tab ... 119
Comments Tab ... 120
Command Lines Tab .. 120

SSD Trim Configuration Editor .. 121
Trim Tab .. 121
Comments Tab ... 122
Command Lines Tab .. 122

Chapter 4
Using the Command Line Switches.. 123

Syntax.. 124
Basic Switches... 125

Target Specification.. 127
I/O Size ... 129
File Size .. 130
Queue Depth ... 131
Thread Count .. 132
Data Pattern... 134

Switches by Category.. 135
General Switches .. 137
Stand-alone Switches .. 145
I/O Characteristic Switches .. 148
Target Related Switches ... 163
Data Pattern Related Switches .. 170
Data Integrity Related Switches ... 176
Error Related Switches ... 179

Chapter 5
Logging and Output... 183

Status Log.. 184
Performance Summary Log... 185
Comma-delimited Performance Log ... 186
Error Log ... 186
Sample Logs .. 186

Sample Error Log.. 186
Sample Status Log .. 188
vi Medusa Labs Test Tools Suite

Contents

Chapter 6
Data Pattern Reference ... 191

Overview ... 192
Designed For Signal Aggravation... 192
Customized Patterns ... 192
Continuously Changing I/O Stream.. 192

Customizing Data Patterns .. 194
Using Pattern Modifiers.. 195
Custom Blink Pattern.. 198

Specified Data Patterns ... 202

Chapter 7
Catapult Test Tool Automation.. 203

Basic Usage ... 204
Catapult Switches .. 207
Scripting .. 233

Example 1 (Windows batch file) .. 233
Example 2 (Windows batch file) .. 234

Appendix A
Data Pattern Numbers... 235

Appendix B
Test Guidelines and Examples.. 239

A Word About Hardware Configurations ... 240
Maximum Bandwidth Stress Testing .. 240
Performance Testing.. 242
Data Integrity Testing.. 243

Backup or Snapshot Testing ... 243
Maximum Queue Testing ... 244
Full Coverage Target Testing ... 244

Appendix C
Debug Example .. 245

Default Trigger Value ... 246
TRIGGER.OUT marks - for CACA trigger ... 247

Locating the Trigger Data Frame in TraceView ... 248
Finding the Write and Read Operations .. 249
Error Log Created.. 250
Finding the Corrupt Data Frame ... 252
Using I/O Signatures ... 255
Using the FindLBA Utility.. 256

Example 1 ... 256
Example 2 ... 256

Appendix D
I/O Signatures... 257

Appendix E
Exit Codes ... 261
Medusa Labs Test Tools Suite vii

Contents

Exit Code Descriptions ... 263

Appendix F
Architecture Bandwidths .. 265

PCI... 266
PCI-X... 266
PCI-Express... 266
Fibre Channel (Full Duplex) ... 266
Fast Ethernet (Full Duplex) ... 266
Gigabit Ethernet (Full Duplex).. 266
SAS.. 266

Glossary .. 267
Index.. 271
viii Medusa Labs Test Tools Suite

About this Guide

What this Guide Contains

This guide contains the following chapters:

Chapter 1, “About Medusa Labs Test Tools” describes the MLTT capabilities. It also provide
examples of test configurations to use with MLTT and includes system requirements and
information about licensing.

Chapter 2, “Using the Graphical User Interface” describes the graphical user interface and menu
items.

Chapter 3, “Using the Configuration Editors” describes each of the configuration editors of the
graphical user interface.

Chapter 4, “Using the Command Line Switches” describes the test commands you use to stress
your devices.

Chapter 5, “Logging and Output” describes the logs that are generated when you use MLTT.

Chapter 6, “Data Pattern Reference” discusses using data patterns in your tests and how you can
customize them.

Chapter 7, “Catapult Test Tool Automation” describes how to use the discovery tool that also
includes scripting features to automate tests you want to run.

Appendix A, “Data Pattern Numbers” lists the numbers you use to call data patterns in your test.

Appendix B, “Test Guidelines and Examples” contains examples of how to use the switches and
descriptions of tests you can run.

Appendix C, “Debug Example,” describes how MLTT is used in a practical scenario and details
the process of tracking errors.

Appendix D, “I/O Signatures” describes how to use I/O Signatures.

Appendix E, “Exit Codes” provides the exit codes and their descriptions.

Congratulations on your purchase of the Medusa Labs Test Tools Suite.

This guide describes the Medusa Labs Test Tools (MLTT) features and
provides information about how to use the tools to test your devices.

For information on installing Medusa Labs Test Tools and the License
Manager, see the Medusa Labs Test Tools Suite Installation Guide.
1

Preface Conventions

Appendix F, “Architecture Bandwidths” lists the bandwidths for various architectures.

Conventions

The following conventions are used in this guide.

Message Formats

This guide uses the following format to highlight special messages:

Typographical Conventions

This guide uses the following typographical conventions:

Note: This format is used to highlight information of importance or special interest.

Important: This format is used to highlight information that you should know.

Caution: This format is used to highlight information that will help you prevent equipment
failure or loss of data.

Warning: This format is used to highlight material involving possibility of injury or
equipment damage.

bold sans serif Commands

italics Directory names, book titles, named key, for example the Enter key.

courier font Screen text, user-typed command-line entries.

courier italics user-supplied variable, argument
2 Medusa Labs Test Tools Suite

Chapter 1
About Medusa Labs Test Tools

In this chapter:

• “What’s New in this Medusa Labs Test Tools Version” on page 4

• “What Medusa Labs Test Tools Does” on page 5

• “How Medusa Labs Test Tools Works” on page 6

• “Pain and Maim Test Tools” on page 6

• “Catapult Test Tool Automation” on page 7

• “FindLBA Utility” on page 7

• “GetKey Utility” on page 7

• “Licensing” on page 8

• “System Requirements” on page 13

• “Testing Concepts” on page 17
3

About Medusa Labs Test Tools What’s New in this Medusa Labs Test Tools Version

What’s New in this Medusa Labs Test Tools Version

The Medusa Labs Test Tools (MLTT) Suite version 7.0 has the following new features:

• IOMeter allows IOMeter Configuration Files (.icf and .txt files) to be imported into MLTT as
test plans. Refer to “Import Test Plans...” on page 25 for more information.

• SSD Secure Erase erases the data on a Solid State Drive (SSD) leaving it in a clean state.

• Refer to “SSD Secure Erase Configuration Editor” on page 119 for information about
using this feature with the graphical user interface (GUI).

• Refer to “--secure-erase Erase the Target Device and Exit” on page 145 for information
about using this feature with the command line inputs.

• SSD Trim erases specified data blocks. It may be run as a target Solid State Drive (SSD)
pre-conditioning step before running I/O tests.

• Refer to “SSD Trim Configuration Editor” on page 121 for information about using this
feature with the graphical user interface (GUI).

• Refer to “--trim Send Trim to Target” on page 147 for information about using this feature
with the command line inputs.

• Steady State determines the steady state for a target across five consecutive test runs. When
steady state is achieved, the test plan will be stopped when the current test iteration completes
and if the test plan is part of a planning group, the next test plan in the group is started.

• For information about using this feature with the graphical user interface (GUI), refer to
“Steady State” on page 68 for Custom configurations or refer to “Steady State” on page 92
for Performance configurations.

• Refer to “--steady-state Determine Steady State” on page 142 for information about using
this feature with the command line inputs.

• Latency Histogram collects and displays latency histogram data per target using
user-specified bins which are sorted by the magnitude.

• For information about using this feature with the graphical user interface (GUI), refer to
page 68 for configuration information and refer to “Latency Histogram Tab” on page 60
for display information.

• Refer to “--latency-histogram Collect Latency Histogram” on page 144 for information
about using this feature with the command line inputs.

• S.M.A.R.T Monitoring retrieves Self-Monitoring, Analysis and Reporting Technology
(S.M.A.R.T.) attributes and status from target devices and logs them.

• Refer to “--smart S.M.A.R.T Monitoring” on page 169 for information about using this
feature with the command line inputs.
4 Medusa Labs Test Tools Suite

What Medusa Labs Test Tools Does About Medusa Labs Test Tools

What Medusa Labs Test Tools Does

The Medusa Labs Test Tools (MLTT) Suite performs data integrity testing, signal aggravation, and
enterprise application simulation.

Medusa Labs develops test tools that meet the extreme demands of enterprise test and
development engineers. The superiority of these tools is due to several factors, including:

• The Tools are fast and efficient. In many baseline evaluations, we find that our tools are
generally faster and more processor efficient than any other test applications in the industry. In
many cases, we are able to achieve throughput greater than the fastest industry-standard
benchmarks. What’s even more impressive is that on many high-end systems, we are able to
write, read, and compare data faster than many benchmarks performing the same I/O without
data integrity checking. When the technology allows for full duplex, we find that our test tools
can many times achieve 100% greater throughput than other available benchmarks or tools, as
the majority of them were developed with half duplex (or bus) operations in mind.

• The Tools are precise and highly specific. Many test tools used during development attempt
to stress the aggregate system. Medusa Labs designs our test tools in a manner that allows
them to stress specific and unique areas of an enterprise system. Although our tools are
designed for specific uses, you can easily set them up to stress the aggregate systems or set
them up for full scale enterprise testing.

• The Tools are designed with debug and analysis in mind. Finding bugs is easy.
Characterizing their behavior and eventual root cause analysis can be tricky. We have designed
our tools to send out unique data patterns (to trigger analyzers) when they discover a data
anomaly, such as data corruption or data loss. We also insert identifying data values into our
data patterns that allow the test engineer to better determine and track the client and/or thread
that potentially is the cause or catalyst for the error condition.

• The Tools contain specific data patterns and routines that best stress various
architectures. As a number of our test services customers have seen, these data patterns and
routines can aggravate or be a catalyst for quicker reproduction of issues. From our
experiences, we have found that a substantial number of tested components will readily show
certain failure types when subjected to only data pattern specific high stress testing.

• The code is portable. Our command line tools are supported on Windows®1, Linux®2,
HP-UX®3, and Solaris (SPARC-based and X86-based) platforms. A consistent user interface
makes it easy for test engineers to move between platforms.

• The Tools are designed to bypass multiple layers of the operating systems. In order to fully
stress the hardware under test, our tools have settings that allow for partial or complete
bypassing of several layers of the OS that inhibit sustained high stress testing. Tools can be
executed with switches to request cached or non-cached I/O. Target access can be directed at
file systems, logical devices, or physical devices to enable the test engineer to drill down to the
desired layers.

1Windows is a registered trademarks of Microsoft Corporation in the United States and/or other countries.
2Linux is a registered trademark of Linus Torvalds.
3HP-UX is a registered trademark of Hewlett-Packard Company.
Medusa Labs Test Tools Suite 5

About Medusa Labs Test Tools How Medusa Labs Test Tools Works

How Medusa Labs Test Tools Works

Our test tools are user-mode command-line applications that run on a host system. At the simplest
level, our test tools operate in an initiator-target fashion. The host system acts as an initiator and
the target can be any storage device internal or external to the host system. With our test tools, the
host system becomes a precision traffic generator using real-world application data. Because the
tools are command-line based, they are ideal for setting up scripted test runs. A Graphical User
Interface (GUI) is also available on Windows platforms that duplicate the command-line options.

Pain and Maim Test Tools

Pain and Maim are the currently available I/O test tools in the Medusa Labs Test Tools Suite.

Pain is a synchronous I/O tool that is designed to issue a single pending I/O per worker thread.

Maim is an asynchronous I/O tool that is designed to issue multiple pending I/Os per worker
thread.

Table 1 shows a comparison of these tools.

Sock Test Tool

Sock is a TCP network I/O test tool where each worker thread simulates a client/server connection
performing synchronous I/O to exchange data. Sock can be used very much like Pain
(e.g. read-only, write-only, write-read with data comparison, etc.) or in transaction mode with
various I/O profile settings to simulate I/O generation of network applications such as HTTP Web
transactions.

Table 1: Test Tool Comparison

Pain Maim

Synchronous I/O Asynchronous I/O

Single pending I/O per worker thread Multiple pending I/Os in multiple worker threads

Separate file or device offset range for each thread Single file or device offset range.

Static queue depth Static or fluctuating (bursting) queue depth

Supports a memory only mode Target device access only

Excellent full system and target stress testing Focused target testing

High thread counts will create processor overhead Extremely processor efficient
6 Medusa Labs Test Tools Suite

Catapult Test Tool Automation About Medusa Labs Test Tools

Catapult Test Tool Automation

Catapult is the target discovery tool included with the test tool suite that acts as a shell for the I/O
tools. You use Catapult to discover targets available to the host system and pass these targets to the
other test tools for I/O testing. There are also features in Catapult that facilitate test scripting and
automation. Refer to Chapter 7, “Catapult Test Tool Automation” for more information about this
tool.

FindLBA Utility

FindLBA is a utility application you can use when debugging data corruption issues in tests on file
systems or logical devices. It is useful in cases where the logical block address (LBA) reported in
the I/O tool error logs is not accurate because the tools are not directly referencing areas of the
physical media. You can use FindLBA in conjunction with a protocol analyzer to identify the
actual LBA corresponding to a file offset reported by the test tools. FindLBA sends a “ping” of
consecutive reads to a specified offset, which you can identify in a protocol trace. FindLBA is
most useful when you need help finding I/O commands that resulted in data corruption in a
protocol trace capture. Refer to “Using the FindLBA Utility” on page 256 for examples of using
this utility.

GetKey Utility

GetKey is a utility application used for remote license checkouts. A system with network access to
a license server can perform a license checkout for another system that does not have network
access. This utility is particularly useful for temporarily using MLTT at an off site location.

Medusa Agent

Medusa Agent is a Windows service or a Unix daemon process of MLTT that provides the following
functions.

• Local license client

• Discovering other systems running MLTT in the network

• Mediate remote execution of MLTT

The agent uses TCP and UDP to communicate with other systems. The service is installed and configured
during Medusa Labs Test Tools installation, and direct user interaction with the agent process is usually not
necessary.

However, in case the service needs to be stopped or restarted manually:

On Windows, this can be done in the service control management GUI. As shown in Figure 1, the agent is
registered with "Medusa A.R.I.E.S. Agent" as the service name.
Medusa Labs Test Tools Suite 7

About Medusa Labs Test Tools Licensing

Figure 1: Service Control Management Screen

From the command line:

On Windows: "net stop maagent" to stop the service
"net start maagent" to start the service

On Linux: "service maagent stop" to stop the service
"service maagent start" to start the service

On Solaris: "/etc/init.d/maagent stop" to stop the service
"/etc/init.d/maagent start" to start the service

On HP-UX: "/sbin/init.d/maagent stop" to stop the service
"/sbin/init.d/maagent start" to start the service

Licensing

Medusa Labs Test Tools (MLTT) are licensed on a “per seat” subscription basis. This means that
the tools are licensed for a period of time (usually one year). A certain number of “seats” are
licensed under the subscription. A seat is any client system that is currently running MLTT. You
can use the license seats on any system, but concurrent usage is limited to the number of seats
purchased. This methodology allows you to use the tools where they are needed, without being
restricted to particular systems. In addition to Regular Licensing that is described in this section,
MLTT supports Virtual Machine Licensing that is described in depth in “Virtual Machine
Licensing” on page 10.

License usage is regulated by a license server that issues license keys in response to checkout
requests by client systems, up to the number of seats purchased. Refer to Figure 2. The license
server software is provided for on-site installation of the license server. Medusa Labs provides a
hardware security dongle to enable the license server installation.
8 Medusa Labs Test Tools Suite

Licensing About Medusa Labs Test Tools

Figure 2: Medusa Labs Test Tools License Model

You can check out license keys from the license server for any client system. The issued key will
work only for the client system that checked it out. A license key is time limited and the duration
of the checkout is configurable. A license seat is consumed on the license server when you
perform a checkout. The license seat remains allocated to the system that checked out the key until
the checkout time limit is exceeded or you perform a check-in.

All licensing information is stored on the client system and no further contact with the license
server is required during the checkout period. Checked out keys expire when the key’s time limit is
exceeded; the license seats automatically become available on the license server. At this point, the
tools would need to be able to checkout a new license key to replace the expired key if further use
of the tools is required. If use of the tools on a system is completed before the time limit is
reached, a check-in may be performed to return the key to the server and make the license seat
available for other systems.
Medusa Labs Test Tools Suite 9

About Medusa Labs Test Tools Licensing

In most cases, the systems running the tools will checkout a license key from the license server
directly over a network. However, a networked system can perform a checkout on behalf of a
system that is not connected to a network or that does not have network access to the license
server. This is called a remote checkout and it is accomplished with the GetKey utility. A remote
checkout requires a machine lock file (fingerprint) created by the tools be transferred to the
networked system performing the remote checkout. This lock file is used by GetKey to request a
license authorization code from the license server.

Only the I/O generating test tools (Pain, Maim, and Sock) require a license key. All the test tools
running on a client system use the same key.

Licensing Requirements

To checkout a license and run MLTT, your client systems must meet the following minimum
requirements.

• To check out a license directly from the license server, the client system must be attached to a
network with access to the server. TCP/IP must be properly configured on the client system. It
is important to make certain that UNIX systems setup as DHCP clients are able to resolve their
own host names.

• The time on the client system must be accurate. Because the license checkouts are time
limited, the times on the client and the license server need to be reasonably close. A license
checkout may fail if the time discrepancy between the client and server is too great. The client
and server can reside in different time zones, as long as the local time is accurate for both
systems.

Virtual Machine Licensing

A Virtual Machine (VM) License is a new license type added to Medusa License Management
(MLM) Server 1.2.1 and Medusa Labs Test Tools 6.0.0. The optional VM licenses provide the
same capability as regular licenses but are more cost effective on per seat basis. However, VM
licenses can only be granted to supported and recognized virtual machines being hosted on
VMware1 ESX and VMware ESXi servers.

VM licenses are considered valid only when at least one VM on the host environment has regular
license checked out. For example, an MLTT deployment site has two VMware ESX/ESXi servers
with each server hosting ten VMs. Each ESX/ESXi server (with its ten VMs) is considered a “host
environment”. With the new VM licensing option, you can purchase the less expensive VM
licenses. However, because at least one regular license per host environment is required, at least
two regular licenses (one checked out to a VM on each server) are needed for this scenario. Refer
to Figure 3.

1VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
10 Medusa Labs Test Tools Suite

Licensing About Medusa Labs Test Tools

Figure 3: VM Licensing Example Diagram

To get all 20 VMs licensed, one VM in each host environment checks out and uses a regular
license while the other nine VMs in the host environment can use VM licenses. The VM
designated to use the regular license is the “VM license proxy” of that host environment.

VM Licensing Client Requirements

Virtual machines must meet the following requirements to use VM licensing:

• The only “supported, recognized” virtual machines are hosted on VMware ESX/ESXi servers.

• The guest OS must be Windows or Linux.

• The guest OS must have the VMware Guest Tools installed.

• Unrestricted Virtual Machine Communication Interface (VMCI) must be enabled in the host
environment.

Deploying VM Licensing

The following is an overview of the basic steps required to deploy VM licenses within your VM
host environments. The installation steps are described in detail in the Medusa Labs Test Tools
Suite Installation Guide.

1 Install MLM Server 1.2.1 (or newer) on the license server.

2 Purchase a number of VM licenses along with the needed number of regular licenses.
Medusa Labs Test Tools Suite 11

About Medusa Labs Test Tools Licensing

3 Install the purchased licenses into the MLM Server’s HASP dongle using the same procedure
outlined in the installation guide.

4 Once installed, running mlmadmin -reportserverstate displays two products (MedusaLabs
Test Tools version 1 and MedusaLabs Test Tools version 1 for VM) and the
number of seats purchased for each tool.

5 Install Medusa Labs Test Tools 6.0 (or newer) on the VMs.

6 For each host environment, designate one of the VMs running Medusa Labs Test Tools 7.0 as
the “VM license proxy” by executing mlmadmin -vmproxy 1 in the designated VM.

To revoke the “VM license proxy” designation for a VM, execute mlmadmin -vmproxy 0
command.

Remote Checkout

When a client system is unable to contact a license server and perform a checkout directly, you can
use the remote checkout approach. You can also use remote checkouts to temporarily share MLTT
with a third party for reproducing test scenarios. Any Windows system with network connectivity
to the license server can perform a remote checkout with the GetKey utility.

1 Run one of the I/O Test Tools (Pain or Maim) on the client system.

When a checkout attempt fails, the tools automatically generate a system fingerprint file in the
config directory. The file is named after the system host name, with a .dat extension, for
example: myhost.dat.

2 Transport the .dat file from the client system to the networked system running GetKey, with
access to the license server.

You can do this using any available method, including: floppy, USB flash drive, peer to peer
network, etc. If you are an off-site user, you can also e-mail this file for checkout from another
location and the license key can be e-mailed back.

3 Run the GetKey utility on the networked system to perform a checkout for the client system.
The path to the configuration file is passed to GetKey with the -f switch. You specify the
number of days for the checkout with the -z switch (for example: getkey -fmyhost.dat
-z3).

4 GetKey will contact the license server and request a license checkout. If successful, it will
create a file in the current directory with the same name as the fingerprint file, with a .lic
extension (for example, myhost.lic.)

5 You must take this file back to the client system to install the license code.

6 On the client system, run one of the I/O tools (Pain or Maim) with the license switch used to
install the authorization code. The syntax of this switch is: -Z#file_name, where
file_name is the location and name of the authorization code file created with GetKey.

Example:

Pain -Z#c:\temp\myhost.lic

Use the -Z switch to find a machine lock file (fingerprint) and to import license file back in.
This is used during a remote check out.

7 The tool will install the license and display the checkout time available. You can now use any
I/O tool for the checkout duration.
12 Medusa Labs Test Tools Suite

System Requirements About Medusa Labs Test Tools

To return a remote checkout:

1 Run getkey -r on the remote system. This will deactivate the license and create a license
return file named after the remote system. Ex: remote_system_name.ret.

2 Take the .ret file to any system with network connectivity to the license server. Run getkey
-rremote_system_name.ret to return the license seat to the license server.

Migrating the MLM License Server

To migrate the MLM License Server to a different machine requires the following backup/restore
procedure in order to avoid having a corrupted server state. The procedure must be performed
directly at the old and new license server systems because it requires physically removing and
plugging in the USB Key.

At the current license server system:

1 Open a command window.

2 Stop the MLM License Server by running “net stop mlms”.

3 Unplug the MLM License Server USB Key

WARNING: Do not plug the USB Key back in on any system until this backup/restore
procedure is completed.

4 Backup the MLM License Server state by running mlmadmin -backup. This will create the
mlms.backup file.

5 Copy it to the new system.

At the new license server system:

1 Install the MLMS software on the new system.

WARNING: Do not plug the USB Key back in on any system until this backup/restore
procedure is completed.

2 Open a command window.

3 Use cd to open the directory where the mlms.backup file from the old system was copied.

4 Restore the MLM License Server state by running mlmadmin -restore.

5 Plug in the MLM License Server USB Key.

6 Start the MLMS service in the new system by running net start mlms.

7 Make sure the Medusa Labs Test Tools client machines are configured to use the new MLM
License Server.

System Requirements

The Medusa Labs Test Tools (MLTT) are designed to utilize system resources as efficiently as
possible. However, performance and stress testing is by nature resource intensive. Specific system
requirements will vary with the architectures under test. Generally speaking, in order to achieve
full duplex wire speed levels of throughput with data integrity checking on a topologies such as
Fibre Channel and Gigabit Ethernet an enterprise class system is desired.
Medusa Labs Test Tools Suite 13

About Medusa Labs Test Tools System Requirements

MLTT will take advantage of multiple processors.

System Limitations

Architecturally, the tools are capable of generating tremendous I/O loads through high queue
depths, large buffer sizes, and various optimizations. However, the host system hardware and
operating system is often the limiting factor in what I/O parameters you can specify for a test and
what the actual throughput to the target is. It is important that you take into account the effects of
the MLTT command line switches on your system resources.

Memory Utilization

MLTT can demand a tremendous amount of system memory, depending on the values indicated
for buffer size and thread count or queue depth. By design, the tools allocate three memory buffers
for each I/O. There is a buffer for forward write data, reverse write data, and read data. This means
that for each worker thread or queued I/O, buffer memory equivalent to three times the requested
buffer size is allocated. You can use the following equation to determine memory requirements
based on buffer size and thread count or queue depth:

(Buffer Size (-b#) x 3) x (Thread Count (-t#) or Queue Depth (-Q#))

For example:

pain -t10 -b512k

Or

maim -Q10 -b512k

These command lines both result in a buffer allocation of 15MB (512k x 3 = 1.5MB;
1.5MB x 10 = 15MB). This is in addition to the base memory footprint of the tools, which is 5 to
10MB, depending on the specific tool. It is especially important to keep memory allocations in
mind when running multiple instances of the tools to a number of targets.
14 Medusa Labs Test Tools Suite

System Requirements About Medusa Labs Test Tools

Processor Utilization

MLTT is designed to keep processor utilization as low as possible for most I/O testing. However,
this is another area where the number of pending I/Os and the size of the I/O buffers can cause the
tools to hit a system bottleneck. Data integrity checking generates a load on the processors that
increases with the buffer size. With data comparisons enabled, every byte of read data is compared
against write data in the default comparison mode. Extremely large buffer sizes require substantial
processor time to walk through each buffer. I/O operations (IOPS) focused performance testing
can also place a tremendous load on the processors, as higher queue depths with smaller I/O
requests sizes are typically used. The increased frequency of context switching required by this
type of testing results in greater processor utilization.

Firewalls

In Medusa Labs Test Tools (MLTT) 6.0.1 or later, MLTT dynamically manages the firewall rules.
This means that under most situations, it is no longer necessary to disable the firewall for MLTT.

However, sometimes this automatic firewall management may not be possible due to site policies
or specific user configurations. In such cases, you will need to provide manual firewall
configurations if you want to use MLTT's networking features, such as remote testing.

In Windows, the preferred method is to add the MLTT executable files to the firewall exceptions.
The executable files to be added to the exception list to allow incoming network connections are
the "<install_dir>\Test Tools\bin*.exe" files.

In Unix, application-based rules are generally not available and the firewall rules must be
port-based. Because MLTT uses dynamic ports, it is difficult to define a port-based rule.
Therefore, if the new dynamic rule management feature of MLTT is not possible on your system,
the firewall may need to be deactivated.

However, under typical default conditions, the new dynamic firewall rule management feature
should be sufficient for hands-off operation.

Operating System Restrictions

The host operating system might impose restrictions such as limited thread count, maximum
queue depth, concurrent file handles, and others. MLTT is designed to return operating system
specific error messages whenever possible to assist with the debug of OS-related error conditions.
You should also take into account the OS handling of I/O requests. Some test cases, particularly
those involving file systems, might yield incorrect performance results due to OS caching.

You can use a protocol analyzer to verify the I/O transfer size.

Important: You should understand that operating systems or drivers typically break apart
large I/O requests into several smaller ones. A large specified block size does not necessarily
mean that the target will receive the entire I/O size at once.

The reverse is also true. Often, device drivers will coalesce small I/Os into one larger I/O.
Medusa Labs Test Tools Suite 15

About Medusa Labs Test Tools System Requirements

Windows User Account Control (UAC) Restrictions

Running MLTT can be affected by the Windows User Account Control (UAC) state. The
following table summarizes how the UAC state will affect MLTT operation:

Table 2: Pros and Cons of Using UAC with MLTT

UAC ON
UAC ON,
run MLTT "Run as administrator..."

UAC OFF, run MLTT as normal
(no-elevated) admin user

Pros:
• UAC is on
• Windows 8 Metro Live Tiles works

correctly
• Catapult can see mapped network

shares
• GUI can see mapped network shares

Pros:
• UAC is on
• Windows 8 Metro Live Tiles works

correctly
• Catapult can determine local physical

drive attributes
• GUI can determine local physical drive

attributes
• Pain/Maim can run to local physical

drives

Pros:
• Catapult can determine local physical

drive attributes
• GUI can determine local physical drive

attributes
• Pain/Maim can run to local physical

drives
• Catapult can see mapped network

shares
• GUI can see local network shares

Cons:
• Catapult cannot determine local

physical drive attributes
• GUI cannot determine local physical

drive attributes
• Pain/Maim cannot run to local physical

drives

Cons:
• Catapult cannot see mapped network

shares
• GUI cannot see mapped network

shares

Cons:
• UAC is off
• Windows 8 Metro Live Tiles don't work

Work-arounds:
• For GUI: right-click on GUI -> choose

"Run as administrator..."
• For CLI: "Run as administrator..." a

cmd.exe -> run the tools from within
that console

NOTE1: UAC OFF has been the normal (and one-and-only supported) mode of operation before MLTT 6.0.1.
NOTE2: This is an issue only on local systems. If MLTT running on a Windows system is accessed only remotely using the

GUI or Catapult on another system, then whether or not that remote system has UAC on/off is not an issue.
16 Medusa Labs Test Tools Suite

Testing Concepts About Medusa Labs Test Tools

Testing Concepts

This section discusses some of the system and network planning considerations that you must
account for to use MLTT effectively.

Target Considerations

You need to consider the capabilities and characteristics of a target device when setting up a test.
Queue depth, block size, and I/O modes are the most influential test parameters from the target
perspective.

The most prominent target limitation, particularly when testing hard drives, is queue depth.
Excessive queue settings that are specified with the intent of providing maximum stress may result
in minimal throughput due to queue full conditions on the target.

You also need to consider a target’s caching abilities when setting up a test, especially on RAID
controllers with large amounts of cache memory. You might want to keep I/O characteristics such
that the target is able to service requests within cache, for the purpose of performance or stress
testing of a host system or an interconnecting device such as a switch. On the other hand, when
testing the target itself, you should include tests that overrun cache boundaries and force frequent
commits to the hard drives. This can be accomplished with combinations of queue (thread), block,
and file size parameters.

There are a variety of I/O modes in MLTT, including static queuing, random access, and full stroke
target coverage. Comprehensive testing of target systems should include exposure to these modes.

Windows platforms provide raw access through physical drive links (for example:
\\.\physicaldrive1).

MLTT uses O_DIRECT by default on Linux systems with kernel version 2.6 or higher for
non-cached I/O. However, on earlier Linux kernels, it is necessary to bind the block devices to a
"raw" device to achieve non-cached I/O. See "man raw" on a Linux kernel 2.4.x system for more
details.

Example:

raw /dev/raw/raw1/dev/sdb

When you use Catapult to start physical I/O tests on a Linux kernel 2.4 system, this binding is
made for you automatically.

Raw access on Solaris platforms is performed through the “rdsk” device path to a drive slice (for
example: /dev/rdsk/c1t0d0s2).

Important: To insure that the maximum possible throughput to a target is realized, you
should run MLTT to physical devices (raw access) whenever possible. Running I/O traffic to
a file system involves several layers of overhead at the host system, which results in a lower
stress load on the target.
Medusa Labs Test Tools Suite 17

About Medusa Labs Test Tools Testing Concepts

Protocol Analyzers

While Medusa Labs Test Tools (MLTT) are designed to report conditions as accurately as possible
from the application level, we cannot overemphasize the importance of using in-line protocol
analyzers or traffic monitors whenever possible. In our experience, a substantial number of defects
or deficiencies are overlooked in product development due to anomalies that are not readily visible
at the application level. An analyzer is essential to detecting underlying items of interest, such as
I/O fragmentation and recoverable errors, and verifying performance numbers.

A powerful feature of MLTT is the ability to send an I/O with a special value for analyzer
triggering. Fault conditions which would be difficult, if not impossible, to debug and to find the
root-cause from the application level can easily be captured in a trace and analyzed in detail.

TraceView Support

Some JDSU traffic generator products add some records into the data portion of the traffic. This is
the case for the JDSU Load Tester and Medusa Labs Test Tools. MLTT adds a special record at
every 512-byte boundary of the SCSI data.

The following choices are available in JDSU Analyzer TraceView:

Don't Decode JDSU Signatures

This option disables the decoding of the JDSU special records. This is the default setting.

Medusa Labs Test Tools I/O Signature

This option enables the decoding of the MLTT Signature records every 512 bytes in the SCSI data.
This switch enables decoding of these special records.

Medusa Labs Test Tools I/O Signature/Timestamp in seconds

This option is the same as the previous one, except that an additional 32-bit timestamp is decoded
at the end of the record. This timestamp is added to the record if specified by command-line
arguments within MLTT when the capture is created. Refer to “-U I/O Signature Timestamp
Units” on page 142 for information on specifying the timestamp addition to the I/O signature in
seconds using the -U command.

Medusa Labs Test Tools I/O Signature/Timestamp in milliseconds

This option is the same as the previous one, except that an additional 16-bit millisecond resolution
timestamp is added after the 32-bit timestamp. This timestamp is also added by command-line
argument. Refer to “-U I/O Signature Timestamp Units” on page 142 for information on
specifying the timestamp addition to the I/O signature in milliseconds using the -Um command.
18 Medusa Labs Test Tools Suite

Chapter 2
Using the Graphical User Interface

In this chapter:

• “Using the Medusa Labs Test Tools GUI” on page 20

• “Medusa Labs Test Tools GUI” on page 23

• “Medusa Labs Test Tools Menus” on page 25

• “Test Planning Tab” on page 28

• “Test Running Tab” on page 45

• “Test Analysis Tab” on page 50
19

Using the Graphical User Interface Using the Medusa Labs Test Tools GUI

Using the Medusa Labs Test Tools GUI

The Medusa Labs Test Tools (MLTT) Graphical User Interface (GUI) provides a quick, visual
system to run MLTT. The basic steps for running a test with the GUI are:

• Selecting the targets.

• Selecting a configuration or configuring a new set of test parameters.

• Running the test.

• Viewing the output results.

Launching the Medusa Labs Test Tools

When MLTT was installed, it is likely that the Medusa Labs Test Tools shortcut icon was installed
on the desktop. Clicking this icon is the quickest way to launch MLTT. However, you can also
launch the MLTT application by:

1 Clicking the Windows Start menu.

2 Choosing Programs > Medusa Labs Test Tools > Medusa Labs Test Tools.

The Medusa Labs Test Tools main window opens.

Setting Up a Performance Test

Setting up a simple performance test includes selecting the target (or targets), selecting/creating
and editing the configuration, running the test, and viewing the test output.

Selecting the Target

You can select targets from a list of targets that are available for testing with MLTT.

1 After creating a test plan, select the targets from the list displayed in the Targets area.

You can expand/collapse the drive categories by clicking the plus/minus sign on the left of
each category.

2 To select the targets, click the target and drag it to the test plan you created in the Test Plans
area.

Note: For Windows 8, select the Start button and the select the Medusa Labs Test Tools
icon.

Note: You can also select the targets first and drag/drop the target into the Test Plan
Browser (see page 37) to automatically create a Test Plan.
20 Medusa Labs Test Tools Suite

Using the Medusa Labs Test Tools GUI Using the Graphical User Interface

Some grayed-out targets cannot be selected because they include an OS or active partition.
This protection mechanism keeps critical data from being overwritten during testing.

You can select a group of drives, such as File System, to select all the drives of that category.

To view the information for a target, right-click the target and select Properties.

Selecting or Creating the Configuration

You can select either an existing configuration or create a new configuration for testing with
MLTT.

1 Select an existing configuration in the folder of Medusa Sample Configurations, or create a
new configuration in the Configurations area of the Medusa Labs Test Tools main window.

2 On the Configurations area, select the folder where you want the new configuration to be
located. For example, select the User Configurations folder to locate your new configuration
in it.

The Medusa Sample Configurations folder is read-only. When creating a new configuration,
select the User Configurations folder or create a new folder by clicking the New Folder
button .

3 Click the black arrow at the right of the New Configuration button to open the drop
down menu and then select the desired configuration type.

The new configuration is listed in the folder. You can right-click the new configuration and
click Rename, or click and pause on the name to rename it.

You can also create a new configuration from an existing configuration. To copy a
configuration from the Medusa Sample Configurations, right-click the configuration and
choose Copy from the pop-up menu. Then select the new folder, right-click, and choose
Paste. This method is particularly helpful when you only want to edit a few settings of an
existing configuration to create a new configuration.

4 Double-click the new configuration to edit the options. The Configuration Editor window is
displayed.

For information about configuration editor settings, see Chapter 3, “Using the Configuration
Editors’’.

5 Click OK.

6 To select a configuration, click the desired configuration and drag it to the test plan on the Test
Plans area.

Caution: Physical access is destructive to the data on the target and can overwrite the
partition data.
Medusa Labs Test Tools Suite 21

Using the Graphical User Interface Using the Medusa Labs Test Tools GUI

Running the Test

Run the test based on the targets and configuration you selected.

1 Click the Start button. Make sure that you have selected the test plan that you want to run.

The test begins on the selected targets for the selected configurations and runs until the
specified duration expires, or the test is stopped manually.

Clicking the Next button stops the configuration that you are currently running and will run
the next batch of configurations.

2 Click the Stop button to manually stop all configurations.

Viewing the Test Output, Exporting Test Summaries, and Deleting Test Plan History

Test results are displayed in the Test Analysis tab as each test configuration has completed
testing. For test configurations with multiple iterations or test plans with multiple configurations,
test results are displayed in Test Analysis tab as each configuration completes.

1 To see the logged results, check either the History Summaries or the History Tests panes.

2 To export test summaries:

• In the History Summaries pane, select the test plan and in the File menu, select the
Export Selected Histories... to open a dialog box that allows you to select where the test
summaries are to be saved. The history file is saved with a “.his” extension. This file can
be moved to another system where it can be viewed using MLTT.

• In the History Summaries pane, right-click on the test plan and select Export selected
summaries to CSV... to open a dialog box that allows you to select where the test
summaries are to be saved.

• In the History Tests pane, right-click on a test and select Export all summaries to CSV...
or select the summaries that you want to save, right-click and select Export selected
summaries to CSV....

Each selection opens a dialog box that allows you to select where the test summaries are to
be saved.

3 To delete a test plan history, in the History Summaries pane, select the test plan and press the
Delete key or right-click and select Delete Selected History.

Note: The saved .his file can be viewed and analyzed using another system
running MLTT. To view this file, move the .his file to the other system, from the
File menu, select Import Histories..., and use the Select Histories dialog box to
locate and select the .his file which will import the file.
22 Medusa Labs Test Tools Suite

Medusa Labs Test Tools GUI Using the Graphical User Interface

Medusa Labs Test Tools GUI

The Graphical User Interface (GUI) implements options available from the command line version
of the application.

The GUI window is made up of:

• “Medusa Labs Test Tools Menus” on page 25

• “Test Planning Tab” on page 28

• “Test Running Tab” on page 45

• “Test Analysis Tab” on page 50

Refer to “GUI Overview” for a brief overview of the GUI.

For details about the command line equivalents of the GUI options, see Chapter 4, “Using the
Command Line Switches’’.

GUI Overview

The Medusa Labs Test Tools (MLTT) main window is the starting point for using the GUI.

Figure 4: Medusa Labs Test Tools GUI Window
Medusa Labs Test Tools Suite 23

Using the Graphical User Interface Medusa Labs Test Tools GUI

The Medusa Labs Test Tools Main window contains the following components (refer to Figure 4):

Menu Bar (See page 25)

The Menu bar contains the File, View, and Help menu items. For more information about the
MLTT menus, see “Medusa Labs Test Tools Menus”.

Test Planning Tab (See page 28)

The Test Planning tab contains the following panes:

• The Targets pane contains four buttons (Show/Hide Remote Systems, Show/Hide Offline
Systems, Show/Hide VMware ESX(i) Servers, and Change Visibility of Targets) and the
Target Categories section. For more information on target selection, see “Targets Area”.

• The Configurations pane contains the New Folder button, the New Configuration button,
and the Configurations section. For more information on configuration settings, see
“Configurations Area”.

• The Test Plans pane contains the following parts:

• Test Plan buttons: New Planning Group, New Test Plan, New Configuration, and the
Select a test to start/Press start to begin tests button

• Test Plan/Planning Group Browser where you create, edit, and delete test plans and
planning groups

• Test Plan/Planning Group/Configuration Properties pane where you can edit or
customize the properties Test Plans, Planning Groups, or Configurations.

Test Running Tab (See page 45)

The Test Running tab contains the following sections:

• Test control buttons: Stop all testing, Stop currently selected test, and Move to the
next test

• Running Test list lists the running test plans

• Console View shows the results of the selected test plan or its components

• Speedometers displays the real-time speed of the tests

Test Analysis Tab (See page 50)

The Test Analysis tab contains the following sections:

• History Summaries

• History Tests

• History Summaries (or Tests) Information
24 Medusa Labs Test Tools Suite

Medusa Labs Test Tools Menus Using the Graphical User Interface

Medusa Labs Test Tools Menus

The three menus available with the MLTT GUI are File, View, and Help.

File Menu

The File menu (Figure 5) lets you import test plans, configuration, and history files, install license
from file, update remote systems, export selected test plans and selected configurations, and close
MLTT.

Figure 5: File Menu

Import Test Plans...

This option opens the Select Test Plans dialog box where you can browse and select a previously
saved test plan to import. You can import Medusa Lab Test Plans (.sdf files), Legacy Test Plans
(.mltp files), and IOMeter Configuration Files (.icf and .txt files). Note that IOMeter configuration
files are replicated as closely as possible and targets are not imported.

Import Configurations...

This option opens the Select Configurations dialog box where you can browse and select a
previously saved configuration to import.

Import Histories...

This option opens the Select Histories dialog box where you can browse and select a previously
saved history to import. This file has a .his file extension. This feature allows you to export data
(using the File menu’s Export Selected Histories... selection) from the system that has run the
test and view it on another system.

Update Remote Systems...

This option opens the Install Updates dialog box where you can install Tools updates to remote
systems.

Before updating any remote system, please ensure that all MLTT related files are closed before
using this feature.
Medusa Labs Test Tools Suite 25

Using the Graphical User Interface Medusa Labs Test Tools Menus

Install License From File...

This option opens the Select License File dialog box where you can browse and select a license
file (.lic file) to install. This is equivalent to running the command pain -Z#.

Generate License .dat File...

This option opens a browser window where you can browse and select a location where the
generated license file will be saved.

Export Selected Test Plans...

This option allows you to export a selected test plan from the Test Planning area. This option
opens the Export Test Plans dialog box where you can select the folder to export the selected test
plan.

Export Selected Configurations...

This option allows you to export a selected test configuration from the Configurations area. This
option opens the Export Configurations dialog box where you can select the folder to export the
configuration.

Export Selected Histories...

This option allows you to export a selected test summary from the History Summaries area of the
Test Analysis tab. This option opens the Export Histories dialog box where you can select the
folder to export the history summary. The history file is saved with a “.his” extension. This file can
be moved to another system where it can be imported using the MLTT File menu’s Import
Histories... selection. The file can then be viewed on the system.

Exit

Exits Medusa Labs Test Tools.

View Menu

The View menu (refer to Figure 6) gives you the option to show or hide sections of the GUI main
window. Options for the View menu are:

Figure 6: View Menu

Test Planning

This allows you to show or hide remote systems. Select Show Remote Systems to have the
remote systems available in the Targets pane of the Test Planning tab.
26 Medusa Labs Test Tools Suite

Medusa Labs Test Tools Menus Using the Graphical User Interface

Testing Running

This allows you to show or hide the Console View and the Speedometers in the Test Running
tab.

Licensing...

This allows you to show/hide the Licensing dialog where you can see the status of the license,
check in or check out a license and see additional information about the current license status.

Figure 7: Licensing Dialog

Help Menu

This menu provides a link to the user’s guide and the MLTT software information.

Figure 8: Help Menu

User’s Guide

This selection displays the Medusa Labs Test Tools Suite User’s Guide.

About

This selection displays information about MLTT.

Note: The Licensing dialog box for any system may be accessed. Refer to “Accessing
System Licensing Information” on page 31 for instructions.
Medusa Labs Test Tools Suite 27

Using the Graphical User Interface Test Planning Tab

Test Planning Tab

The Test Planning tab has three main areas:

Targets area lists the targets available for testing with MLTT starting on page 28.

Configurations area is used to set up or select the configuration to use for testing starting on
page 32.

Test Plans area is used to set up and select the test plan starting on page 34.

Targets Area

The Targets area lists the targets available for testing with MLTT.

The target can be a file, logical drive, or physical drive that resides in the host system or is
externally attached via SCSI, USB, FireWire, LAN, SAN, Sockets, and others.

The Targets area contains the following:

Targets View Buttons

These buttons allow you to choose the type of targets to show in the Targets Categories section.

Figure 9: Targets View Buttons

.

Table 3: Targets View Button Descriptions

This toggles to allow you to show or hide remote systems in the
Target Categories section.

This toggles to allow you to show or hide offline systems in the
Target Categories section.

This toggles to allow you to show or hide VMware ESX(i) servers
in the Target Categories section.

From the drop-down menu, you can show or hide physical drives,
logical drives, and file systems that reside in the host system
displayed in the Target Categories section. Targets can also be
remote systems or systems that are externally attached via SCSI,
USB, FireWire, LAN, SAN, and others.
28 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

Target Categories Section

The Target Categories section lists the targets that are available for testing with MLTT. The
details for each of the target are shown in columns.

Figure 10: Target Categories Section

To show or hide the target objects such as File System, Logical, Network Interfaces, or Physical,
click the arrow icons () at the left edge of the target.

• When the icon is an arrow pointing right (), the target objects are hidden; click the arrow to
show the objects.

• When the icon is an arrow pointing down (), the target objects are shown; click the arrow to
hide the objects.

Some grayed-out targets cannot be selected because they have a target exclusion. These exclusions
correspond with the ones used by catapult. This protection mechanism keeps critical data from
being overwritten during testing. To override device exclusions for these targets, right-click on the
target or IP address (either IPv4 or IPv6 addresses) and then click Override device exclusions.
The system exclusion cannot be overridden.

The ESX-server-to-VM relationship can be displayed in the Target Categories pane. However,
you must first obtain and install the VMware vSphere Command Line Interface (vSphere CLI)
tools that are available from the support and download page on the VMware website
(http://www.vmware.com/). Figure 11 shows the ESX displayed in the Target categories pane.
The upper illustration shows the ESX when the vSphere CLI is not installed while the lower
illustration shows the ESX after the vSphere CLI has been installed.
Medusa Labs Test Tools Suite 29

Using the Graphical User Interface Test Planning Tab

Figure 11: vSphere Command Line Interface

To filter systems according to host name or IP address:

1 Right-click on the Target Categories section and click Filter Hosts. The Filter search box
(Figure 12) is displayed below the Target Categories section.

Figure 12: Filtering Hosts

2 Type the host name or IP address (either IPv4 or IPv6 addresses) to show only the host or
hosts according to the filter you typed.

3 Select the type of filter, whether a regular expression, a wildcard notation, or a file, from the
drop-down list. If you select File, you need to browse for a plain text file with one host name
or IP address per line.

4 Click to close the Filter textbox.

To connect to a remote subnet, right-click on the Target Categories section and click Connect to
Remote Subnet and enter the IP address of a system on the remote network that is running MLTT.
30 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

MLTT will not automatically connect to systems outside the local subnet. If you want to connect to
another subnet, they must install the tools on a system there and use either catapult or the GUI to
connect to that system.

To display the device characteristics of a target, right-click on a target in the Target Categories
section and click Properties. The Properties window for that selected device will appear.

For hosts, you can also click on the Configure button to launch the Licensing window. The
Configure button in the Properties window is only available for hosts.

On versions of Windows 2003 R2 and later, devices can be brought online or offline. When
devices are offline, they cannot be written to or read from and so are not good for testing. The GUI
can bring drives online so that they can be tested.

To bring a device online or offline, right-click on a target in the Target Categories section and
click Online Disk, Offline Disk, or Initialize Disks.

Accessing System Licensing Information

The licensing information on the Licensing dialog box can be accessed for any system by
right-clicking the system icon, selecting Properties, selecting the Configure... button.

Figure 13: Accessing System Licensing Information
Medusa Labs Test Tools Suite 31

Using the Graphical User Interface Test Planning Tab

Configurations Area

The Configurations area is used to create and manage new configurations. Both new and existing
configurations may also be edited from this area. These edits are performed using the
configuration editors. These editors are described in detail in Chapter 3, “Using the Configuration
Editors’’ starting on page 61.

New Folder Button

This button allows you to create a folder where you can place your new configurations.

New Configuration Button

This button opens the following drop-down list of configurations. Selecting one of these
configurations creates a new blank configuration in the User Configurations folder that is located
in the area below the buttons. You can also select the Configuration Chooser from the menu to
open the Configuration Chooser window.

Figure 14: Create New Configuration Button

You can also access the list of configurations by right-clicking in the Configurations pane and
selecting New Configuration. Refer to Figure 21 on page 36 for a menu that is similar.

Configurations section

The Configurations section lists the folders that contain the sample configurations and
configurations you have created. The sample configurations may not be edited.

Note: The configuration editors are described in detail in Chapter 3, “Using the
Configuration Editors’’ starting on page 61.
32 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

Figure 15: Configurations Section

By default there are two main Configurations folders listed in the Configurations section: the
Medusa Sample Configurations and the User Configurations. You can add more sub-folders to
the User Configurations folder by clicking the Create New Folder button.

The Medusa Sample Configurations cannot be edited. However, you can copy a sample
configuration, paste it in the User Configurations folder, and then edit the pasted copy.

To rename any of the folders or configurations listed in the User Configurations folder, select the
folder or configuration and click it again to edit the name.

To edit a configuration listed in the User Configurations folder, double-click the icon of the
configuration and the configuration editor will open.
Medusa Labs Test Tools Suite 33

Using the Graphical User Interface Test Planning Tab

Test Plans Area

The Test Plans area occupies the right portion of the MLTT application window. This area has a
directory pane (see “Test Plans Directory Pane” on page 34) and an editor pane when an object
(planning group, test plan, or configuration) is selected in the Test Plans directory pane (see “Test
Plans Editor Pane” on page 39).

Figure 16: Test Plans Area

Test Plans Directory Pane

The Test Plans directory pane consists of the four buttons near the top of the pane (shown in
Figure 17) and the Test Plan Browser which displays all the available planning group and test plan
objects.

Figure 17: Directory Pane Buttons

From left to right, these buttons are the New Planning Group button, the New Test Plan button,
the New Configuration button, and the Press start to begin tests button.
34 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

New Planning Group Button

This button allows you to create a new planning group that can be used to group test plans which
allows you to run different configuration and target pairings. When the button is selected, the new
planning group is listed in the directory pane and the new planning group editor is displayed in the
editor pane.

Figure 18: New Planning Group Button

New Test Plan Button

This button allows you to create a new test plan. When the button is selected, the new test plan is
listed in the directory pane and the new test plan editor is displayed in the editor pane.

Figure 19: New Test Plan Button

New Configuration Button

This button opens a dropdown list of configurations selections, such as custom, integrity,
performance, socket, and TCP App Simulation. There are also two command line (Storage CLI
and Network CLI), the SSD Secure Erase, and the SSD Trim configurations available.
Medusa Labs Test Tools Suite 35

Using the Graphical User Interface Test Planning Tab

Figure 20: New Configuration Button

Selecting a configuration from this list allows you to create a new configuration. When a
configuration is selected, the new configuration is listed in the directory pane and the new
configuration editor is displayed in the editor pane. Detailed descriptions for each of these
configuration editors are available in Chapter 3, “Using the Configuration Editors’’ starting on
page 61.

You can also select the Configuration Chooser... from the dropdown list to open the
Configuration Chooser window. When the configuration is chosen, the new configuration is
added to the selected test plan in the directory pane and displayed in the editor pane.

You can also access the list of configurations by right-clicking in the Test Plans pane and selecting
New Configuration.

Figure 21: Right Click Test Plans Pane
36 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

Press start to begin tests Button

This button starts the testing of the selected group or test plan object in the directory pane.

Figure 22: Press start to begin tests Button

Test Plan Browser

The Test Plan Browser (shown in Figure 23) displays all the planning groups, test plans,
configurations, and targets that you created or copied to the directory pane.

Figure 23: Test Plan Browser

To show or hide the test plan browser objects such as test plan group, test plan, configuration, or
target, click the arrow icons () at the left edge of the target.

• When the icon is an arrow pointing right (), the objects are hidden; click the arrow to show
the objects.

• When the icon is an arrow pointing down (), the objects are shown; click the arrow to hide
the objects.

Note: Icons can be moved by clicking and dragging the icon to another location in the Test
Plan Browser. For instance, you may select a configuration in one test plan and move it to
another test plan. The location and order of the icons are maintained after MLTT is closed and
reopened.
Medusa Labs Test Tools Suite 37

Using the Graphical User Interface Test Planning Tab

Each of the objects (planning groups, test plans, configurations, and targets) can be viewed as a
container for performing a test and each has a hierarchy related to the others. See Figure 24.

Figure 24: Test Plan Browser Hierarchy

The Planning Group is the highest level in the hierarchy and contains one or more test plan. A
planning group allows you to run multiple test plans. However, it is not required if you want to run
only one test plan. You can edit the Planning Group in the Test Plans Area Editor Pane. Refer to
“Planning Group Editor” on page 40.

The Test Plan contains the configurations (1 or more) and the targets (1 or more). When the Test
Plan is run, it will run all of its Configurations against all of its Targets. A Test Group containing
the Test Plan is not required to run the one Test Plan only. You can edit the Test Plan in the Test
Plans Area Editor Pane. Refer to “Test Plan Editor” on page 42.

At least one Configuration is required for a Test Plan. You can edit the Configuration in the Test
Plans Area Editor Pane. Refer to “Configuration Editor” on page 44.

At least one Target is required for a Test Plan. Targets are dragged to the Test Plan from the Targets
area. Refer to “Target Categories Section” on page 29. When selected, the target information is
displayed in the Test Plans Area Editor Pane.

New planning groups, test plans, and configurations can also be added by right-clicking in the test
plan browser to display the context menu shown in Figure 25.
38 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

Figure 25: Test Plan Browser Context Menu

Test Plans Editor Pane

The Test Plans editor pane allows you to set up the properties of the object (planning group, test
plan, or configuration) that is selected in the Test Plans directory pane. For example, if a test plan
is selected in the directory pane, the properties for that test plan are displayed in the editor pane so
that you may edit the properties if desired. For details on each editor, refer to “Planning Group
Editor” located below, “Test Plan Editor” on page 42, or “Configuration Editor” on page 44.
Medusa Labs Test Tools Suite 39

Using the Graphical User Interface Test Planning Tab

Planning Group Editor

The Planning Group editor is displayed in the Test Plans editor pane when a planning group is
selected in the directory pane (or when the New Planning Group button is selected.) The
Planning Group editor allows you to edit the following planning group properties:

Figure 26: Planning Group Editor

Settings Tab

The Settings tab displays the properties for the selected planning group. The planning group
properties are:

Plan Group Setup – These options specify the test duration and the number of iterations.

Run all test plans at the same time – Select this check box

Stop All Testing After – Select this check box and edit the number or click the up and down
arrows to set the time to limit the run time of the test plans in the selected group.
40 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

Run the Plan Group – Select this check box and edit the number or click the up and down
arrows to set the number of times the test group containing the test plans will be repeated.

Stop All Testing On Errors – Select this option to stop the tests if errors are detected.

Test Plan Setup – These options specify the test duration and the number of iterations.

Stop Test Plan After – Select this check box and edit the number or click the up and down
arrows to the time to limit the run time of the selected test plan.

Run the Test Plan – Select this check box and edit the number or click the up and down
arrows to set the number of times the test plan will be repeated.

Pause Between Test Plans - Select this check box and edit the number or click the up and
down arrows to the time to pause the run after a test plan has run before starting the next test
plan.

Stop Test Plan on Errors - Select this option to stop the test if errors are detected.

Individual Test Setup – These options configure the behavior for each of the test plans.

Limit Each Test’s Iterations To – An iteration, called a file operation (FOP), is a complete
write and read of an entire file or specified extent on a logical or physical drive. If this option
is not selected, the test will run until manually stopped, or a critical error is encountered.

Stop Each Test After – Select this option to set the duration of each test in the selected test
plan.

Pause Between Tests in a Plan – Select this option to set how long the pause will be
between each test in the test plan.

Set I/O Thread/CPU Affinity – Select this option to specify the number of CPUs to use for
I/O threads. In addition to limiting the number of CPUs used, this option causes a thread to
always run on the same CPU. The number of CPUs specified must be equal to or less than the
number of CPUs on the system and equal to or less than the total number of I/O threads.

Test Sample Interval – Select this option to set the time between performance samples.
Performance samples show the continuing test performance and are written to the log file.
Edit the number or click the up and down arrows to specify the performance sample
interval.

Monitor I/O for Timeouts – Select this option to enable the I/O monitoring mode. A warning
will be displayed when I/Os are not completed before the specified number of seconds. By
default, warnings will appear when a completion exceeds the performance sample time
(5 seconds is the default sample time.) The I/O monitoring feature will report both complete
I/O halts and individual stuck I/Os.

This mode can also be used to catch I/O disruptions on an analyzer. If this mode is used with
the option to continue testing and generate a trigger, an I/O trigger is sent when a halt or stuck
I/O is detected.

Set Timeout to Test Sample Interval – Select this option to set the timeout to the sample
interval specified in the Test Sample Interval field.

Specify Timeout – Edit the number or click the up and down arrows to specify a timeout
or clear the check box to disable monitoring.
Medusa Labs Test Tools Suite 41

Using the Graphical User Interface Test Planning Tab

Testing Offsets - These options let you specify the testing offsets.

Use Default Offsets - uses the default offset.

Use a Shared Offset - allows multiple host systems or multiple sessions of the tools on a
single system to access the same device or file concurrently.

Specify Starting Offset - specifies the starting offset number. Select from the dropdown
menu the unit of the value you specified. The offset value must be a multiple of the logical
block size of the target device.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab

Apply button – Click this button when you are done editing the planning group properties.

Test Plan Editor

The Test Plan editor is displayed in the Test Plans editor pane when a test plan is selected in the
directory pane (or when the New Test Plan button is selected.) The Test Plan editor allows you to
edit the following test plan properties:

Figure 27: Test Plan Editor
42 Medusa Labs Test Tools Suite

Test Planning Tab Using the Graphical User Interface

Settings Tab

The Settings tab displays the properties for the selected test plan. The test plan properties are:

Test Plan Setup – These options specify the test duration and the number of iterations.

Override Plan Group Settings – Select this check box to override the Test Plan Setup
settings if they were setup in the Planning Group using the settings now displayed.

Stop Test Plan After – Select this check box and edit the number or click the up and down
arrows to the time to limit the run time of the selected test plan.

Run the Test Plan – Select this check box and edit the number or click the up and down
arrows to set the number of times the test plan will be repeated.

Stop Test Plan on Errors - Select this option to stop the test if errors are detected.

Individual Test Setup – These options configure how the each of the test plans behavior.

Override Plan Group Settings – Select this check box to override the Individual Test Setup
settings if they were setup in the Planning Group using the settings now displayed.

Limit Each Test’s Iterations To – An iteration, called a file operation (FOP), is a complete
write and read of an entire file or specified extent on a logical or physical drive. If this option
is not selected, the test will run until manually stopped, or a critical error is encountered.

Stop Each Test After – Select this option to set the duration of each test in the selected test
plan.

Pause Between Tests – Select this option to set how long the pause will be between each test
in the test plan.

Set I/O Thread/CPU Affinity: – Select this option to specify the number of CPUs to use for
I/O threads. In addition to limiting the number of CPUs used, this option causes a thread to
always run on the same CPU. The number of CPUs specified must be equal to or less than the
number of CPUs on the system and equal to or less than the total number of I/O threads.

Test Sample Interval – Select this option to set the time between performance samples.
Performance samples show the continuing test performance and are written to the log file.
Edit the number or click the up and down arrows to specify the performance sample
interval.

Monitor I/O for Timeouts – Select this option to enable the I/O monitoring mode. A warning
will be displayed when I/Os are not completed before the specified number of seconds. By
default, warnings will appear when a completion exceeds the performance sample time
(5 seconds is the default sample time.) The I/O monitoring feature will report both complete
I/O halts and individual stuck I/Os.

This mode can also be used to catch I/O disruptions on an analyzer. If this mode is used with
the option to continue testing and generate a trigger, an I/O trigger is sent when a halt or stuck
I/O is detected.

Set Timeout to Test Sample Interval – Select this option to set the timeout to the sample
interval specified in the Test Sample Interval field.

Specify Timeout – Edit the number or click the up and down arrows to specify a timeout
or clear the check box to disable monitoring.
Medusa Labs Test Tools Suite 43

Using the Graphical User Interface Test Planning Tab

Testing Offsets - These options let you specify the testing offsets.

Use Default Offsets - uses the default offset.

Use a Shared Offset - allows multiple host systems or multiple sessions of the tools on a
single system to access the same device or file concurrently.

Specify Starting Offset - specifies the starting offset number. Select from the dropdown
menu the unit of the value you specified. The offset value must be a multiple of the logical
block size of the target device.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab

Apply button – Click this button when you are done editing the test plan properties.

Configuration Editor

The Configuration editor is displayed in the Test Plans editor pane when a configuration is
selected in the directory pane (or when the New Configuration button is selected.) The
Configuration editor allows you to edit the same configuration properties that you can edit in the
configuration editor.

In the Test Plans browser pane, when a configuration is right-clicked, the context menu displays a
Convert to Command Line option.

Figure 28: Convert to Command Line Option

This option converts the configuration into the appropriate CLI configuration. Custom, Integrity,
and Performance configurations are converted to Storage CLI configurations. Socket and TCP
App Simulations are converted to Network CLI configurations. This option is not available for
Storage CLI and Network CLI configurations.

These editors are described in detail in Chapter 3, “Using the Configuration Editors’’ starting on
page 61. Refer to the appropriate configuration editor for a description.
44 Medusa Labs Test Tools Suite

Test Running Tab Using the Graphical User Interface

Test Running Tab

The Test Running tab allows you to display the statistics of the test that you are running and is
shown in Figure 29. All tests are removed as soon as they complete.

Figure 29: Sample Text View of the Test Running Tab

The Test Running tab has four panes:

• Test List and Statistics pane outlined in red.

• Text View pane outlined in blue.

• Graph View pane outlined in green.

• Speedometers pane outlined in purple.
Medusa Labs Test Tools Suite 45

Using the Graphical User Interface Test Running Tab

In addition to the four panes, there are three buttons associated with the Test Running tab near the
top of the tab. These buttons are shown in Figure 30 and described in Table 4.

Figure 30: Test Running Tab Buttons

Test List and Statistics Pane

All running test plans will be listed in the Test List and Statistics pane. The details for each of the
tests are shown in columns.

To show or hide the test plan objects such as configuration and targets, click the arrow
icons () at the left edge of the test plan.

• When the icon is an arrow pointing right (), the objects are hidden; click the arrow to show
the objects.

• When the icon is an arrow pointing down (), the objects are shown; click the arrow to hide
the objects.

Table 4: Test Running Tab Buttons

The Stop all testing button stops all running tests

The Stop currently selected tests button stops the selected test.

The Move to the next test button ends the test that is currently
running and proceeds to the next test in the test plan.

When the Planning Group level is selected:

• The Move to the next test button ends the test plan that
is currently running and proceeds to the next test plan by
default.

• However:

• If the planning group setup has the “Run all test plans
at the same time” option selected, the Move to the
next test button will stop testing and exit the whole
planning group.

• If the planning group only has one test plan, the
Move to the next test button will stop testing and
exit the whole planning group.
46 Medusa Labs Test Tools Suite

Test Running Tab Using the Graphical User Interface

The details displayed in the columns can be managed by right-clicking the row of headings. When
this is done, a menu is displayed showing a list of available items that can be displayed in a
column. From the menu, select a heading to display or remove the column. When an item is
checked, it is displayed in the column.

The following is a list of the available details:

Text View Pane

The Text View pane (shown in Figure 31) displays the results of the selected test plan or its
components. As the test runs, this pane shows the running test results at each sample interval. The
sample interval was identified in the test plan setup.

Figure 31: Text View Pane

This pane can be opened or hidden by clicking the small arrow icon located at the center bottom of
the pane. This icon is shown in the red circle in the illustration above.

Show All General Columns
Hide All General Columns
Name
Status
Command Line
Elapsed Test Time
Remaining Time
Show All Testing Statistic Columns
Hide All Testing Statistic Columns
Avg I/O Completion/Response Time (Sec)
Avg IO/s or TPS
Avg MB/s
Avg Queue Depth
IO/s or TPS
MB/s
Queue Depth
Max I/O Completion/Response Time (Sec)

Max IO/s or TPS
Max MB/s
Max Queue Depth
Min I/O Completion/Response Time (Sec)
Min IO/s or TPS
Min MB/s
Min Queue Depth
CPU
User CPU
Show All Error Columns
Hide All Error Columns
Automatically Show Columns with Errors
Close Errors
Data Corruptions
Flush Errors
Initial Errors
I/O Halts

I/O Timeouts
License Errors
Open Errors
Read Errors
Remove Errors
Seek Errors
Size Errors
Startup Errors
Unknown Errors
Write Errors
Show All Final Statistic Columns
Hide All Final Statistic Columns
Total Bytes
Total Errors
Total File Operations
Total I/Os or Transactions

Note: In addition, right-clicking anywhere in the Test List and Statistics pane, displays a
context menu with several choices that include Stop Test Plan, Stop All Testing, Move to
Next Test in Plan, Move All Plans to Next Test, Expand All, Collapse All, and Columns. The
Columns choice also provide control of the displayed columns organized by categories.
Medusa Labs Test Tools Suite 47

Using the Graphical User Interface Test Running Tab

Graph View Pane

The Graph View pane (shown in Figure 32) displays the progression of the test at each sample
interval. The sample interval was identified in the test plan setup.

Figure 32: Graph View Pane

You can select the Test Value to Display (MB/s, IO/s, Queue Depth, or Average I/O
Completion/Response Time) from the dropdown list located above the graph. The dropdown list
is shown in Figure 33. Changing this value changes the vertical scale on the graph.

Figure 33: Test Value to Display

At the right side of the Test Value to Display list, there is the Show Errors check box that, if
checked, displays errors as they occur during the testing. If the check box is checked, the test runs
normally until an error is detected. Once an error is detected:

• A new Y-axis is displayed on the right edge of the graph to display the number of detected
errors. See Figure 34.

• The number of errors at each sample interval point is indicated with a red dot. Note that red
dots are also added to interval points that occur prior error at the zero point on the graph.

Figure 34: Graph View Pane with Errors
48 Medusa Labs Test Tools Suite

Test Running Tab Using the Graphical User Interface

Speedometers Pane

The Speedometers pane (shown in Figure 32) displays the real-time speed of the tests. There are
two speedometers, one for MB/s and the other IO/s.

Figure 35: Speedometer Pane

The speedometers automatically scale so that when the size of the MLTT window is changed, the
Speedometers pane adjusts to best fit the screen. Right-click anywhere in the Speedometers
pane to display additional options as shown in Figure 36.

Figure 36: Speedometer Pane Right-Click Menu

Change Orientation (Vertical/Horizontal) - Select this option to display the speedometer
on top of each other (vertical) or side-by-side (horizontal).

Show MB/s – Select this option to display the MB/s speedometer.

Show IO/s – Select this option to display the IO/s speedometer.

Set MB/s Scale – Select this option to choose the intervals displayed on the MB/s scale.
You may select 10 MB, 100 MB, 1,000 MB, or Dynamic.

Set IO/s Scale – Select this option to choose the intervals displayed on the IO/s scale. You
may select 100 IO/s, 1,000 IO/s, 10,000 IO/s, 100,000 IO/s, or Dynamic.

Full Screen – Select this option if you prefer to display the speedometers using the whole
computer screen.
Medusa Labs Test Tools Suite 49

Using the Graphical User Interface Test Analysis Tab

Test Analysis Tab

The Test Analysis tab (shown in Figure 37) displays the analysis of outputs of the tests that you
have run.

Figure 37: Sample Test Analysis Tab

The Test Analysis tab has three panes:

• History Summaries pane outlined in blue.

• History Tests pane outlined in green.

• History information pane outlined in red. The title of this pane changes based on what test is
selected from the two previous panes.

• When a test summary is selected in the History Summaries pane, the title of the pane is:
History Summaries Information

• When a test is selected in the History Tests pane, the title of the pane is:
History Tests Information
50 Medusa Labs Test Tools Suite

Test Analysis Tab Using the Graphical User Interface

History Summaries Pane

The History Summaries pane displays all completed test plans. Specific details about each of the
tests is shown in columns.

To show or hide the lower-level objects of a test plan group (such as the test plans, configurations
and targets), click the arrow icons () at the left edge to show (expand) or hide (collapse) the
subordinate objects. (Refer to “Test Plan Browser” on page 37 for a discussion regarding test plan
group and test plan hierarchy.)

• When the icon is an arrow pointing right (), the subordinate objects are hidden; click the
arrow to expand the tree and show the objects.

• When the icon is an arrow pointing down (), the objects are shown; click the arrow to
collapse the tree and hide the objects.

Figure 38: History Summaries Pane

By default, the column information for each test includes Name, Start Date, Elapsed Test Time,
Avg (average) I/O Completion/Response Time, Avg I/Os or TPS, Avg MB/s, Avg Queue Depth,
and Total Errors. However, if you right-click in the pane, a menu is displayed that will allow you
to select from several parameters to add as columns to the table. See Figure 39.

Figure 39: History Summaries Pane Right-Click Menu
Medusa Labs Test Tools Suite 51

Using the Graphical User Interface Test Analysis Tab

In the columns selection, there the Name, Start Date, and Elapsed Test Time selections that you
can select to show or hide that column in the results. There is also five groups: Average,
Maximum, Minimum, Errors, and Final Statistic that can be selected to show or hide results in
these categories.

From each of these groups, you can elect to show or hide all results from within the group or show
or hide individual results within the group. In the Errors group, you also have the option of
automatically showing error columns. This only shows an error column of a specific type if there
are errors of that type.

Using the right-click menu also allows you to browse for test files, export selected summaries as
.csv files, retrieve remote log files, and delete the selected history file.

History Tests Pane

The individual command line commands of the selected test are displayed in the History Tests
pane.

By default, the column information for each command line test includes Command Line, Start
Date, Elapsed Test Time, Avg I/O completion/Response Time (Sec), Avg I/Os or TPS, Avg MB/s,
Avg Queue Depth, and Total Errors. Note that the Name is not included in the default view.

Figure 40: History Tests Pane

As with the History Summaries pane, if you right-click in the History Tests pane, a menu
(shown in Figure 39) is displayed that will allow you to select from several parameters to add as
columns to the table. In the columns selection, there the Name, Command Line, Start Date, and
Elapsed Test Time selections that you can select to show or hide that column in the results. There
is also five groups: Average, Maximum, Minimum, Errors, and Final Statistic that can be selected
to show or hide results in these categories.

Note: Right-clicking over a column displays all of the columns selections vertically without
displaying the groups listed above. This may be used to save key strokes.
52 Medusa Labs Test Tools Suite

Test Analysis Tab Using the Graphical User Interface

From each of these groups, you can elect to show or hide all results from within the group or show
or hide individual results within the group. In the Errors group, you also have the option of
automatically showing error columns. This only shows an error column of a specific type if there
are errors of that type.

Using the right-click menu in the History Tests pane, you may select summaries to be exported to
a .csv file using the Export all summaries to CSV... or Export selected summaries to CSV...
selections.

History Information Pane

The title of this pane changes based on what test is selected from the two previous panes.

• When a test summary is selected in the History Summaries pane, the title of the pane is:
History Summaries Information

• When a test is selected in the History Tests pane, the title of the pane is:
History Tests Information

Figure 41: History Information Pane (History Summaries Information Version)

The History Information pane has four tabs:

• Description (See “Description Tab” on page 54.)

• Graphs (See “Graphs Tab” on page 55.)

• Test Log (See “Test Log Tab” on page 59.)

• Latency Histogram (See “Latency Histogram Tab” on page 60.)

Note: Right-clicking over a column displays all of the columns selections vertically without
displaying the groups listed above. This may be used to save key strokes.
Medusa Labs Test Tools Suite 53

Using the Graphical User Interface Test Analysis Tab

Description Tab

The Description tab provides a summary of the selected test from the History Summaries pane
(shown on the left side of Figure 42) or the selected command line(s) from the History Tests pane
(shown on the right side of Figure 42).

Figure 42: Description Tab Examples

In addition, the Export... button saves the description as a file in .prf format. The .prf files can be
used with the prfgrab tool (provided with Medusa Labs Test Tools Suite) to help prepare
performance reports.

The performance summary gets exported with its designated native extension of .prf. While it is
just a text file, the tools use various file extensions to identify their function (.log, .bad, .dbg, etc.)
You can create a script or use the sample script provided to run a variety of test cases that will
result in the creation of a uniquely named .prf file for each test case. You can then use the prfgrab
tool to consolidate all those .prf files into a .csv file for sorting and graphing in Microsoft Excel.
54 Medusa Labs Test Tools Suite

Test Analysis Tab Using the Graphical User Interface

Graphs Tab

The Graphs tab provides a graphical representation for the test(s) that you have selected in either
the History Summaries or the History Tests panes. By default, the graph shows a line graph of
the average IO/s and average MB/s values, however you have the option to change these views
using the Graphing Options. Refer to “Graphing Options” on page 55 for additional information.

The graphing algorithm attempts to be as robust as possible when test groups, test plans, and
targets (in the History Summaries pane) and tests (in the History Tests pane) are selected.
However, there may be an extreme range of variables in selections that you are able to make. The
graphing algorithm makes a best effort to graph something meaningful by looking at the command
lines.

The algorithm for graphing multiple History Tests selections tries to group the tests in the
horizontal x-axis by pain/maim, write/read, IO size, and thread count, elapsed time, and queue
depth.

If there are a lot of command line differences between the tests and they cannot be fit in those
groups then the graphing algorithm uses the best common thread between the tests that it can
determine.

Graphing Options

The Graphing Options area provides three sets of options to graph, Values to Graph, Value
Statistics to Graph, and Graph Style.

Figure 43: Graphing Options Area With All Available Options Shown Below

The Values to Graph dropdown list allows you to choose IO/s, MB/s, I/O Completion/Response
Time, and Queue Depth. When one of these choices are added (or removed), a graph is added to
(or removed from) the display. The default selections are IO/s and MB/s.

Note: When making graph selections, it is important to select items that make sense to graph.
This is best determined by reviewing the graph’s x-axis for appropriateness to providing
helpful information.
Medusa Labs Test Tools Suite 55

Using the Graphical User Interface Test Analysis Tab

The Value Statistics to Graph dropdown list allows you to choose Average, Current, Maximum,
and Minimum. When one of these choices are added (or removed), a line/bar is added to (or
removed from) each of the graphs. The default selections are Average and Current.

The Graph Style dropdown list allows you to Line graph, Smooth line graph, or Bar graph to view
the data as it best fits your needs. The default selection is Line graph.

• Line graph – provides a point-to-point graphing of the measured data.

• Smooth line graph – provides a smoothing of the line graph to provide a more aesthetic view
of the line graph. When the graph is smoothed, the high and low values
may have a slight loss of accuracy.

• Bar graph – shows the measured values relative to each other in standard bar graph format.

Read/Write, Read, and Write Tabs

The configuration editors have an I/O Payload tab that allows you to select the Read/Write Mix
setting: either Read/Write, Read Only, Write Only, or Specify Custom Read/Write Mix. When
you select a test planning group in the History Summaries pane that ran using multiple
configurations with different Read/Write Mix settings, their graphs will be grouped showing their
Read/Write Mix on a tab labeled Read/Write, Read, or Write.

Pain and Maim Tabs

When you select a test planning group in the History Summaries pane that ran using two different
tool configurations (one using Pain and one using Maim), their graphs will be grouped by their
tools one showing a Pain tab or a Maim tab.

Burst and Static Tabs

When Maim is selected in a configuration, by default, the Queue Depth uses burst queuing. The
Queue Depth also has the Keep Queue Depth Static check box. If Keep Queue Depth Static is
selected, continuous queuing is used.

When you select a test plan in the History Summaries pane that uses both types of queuing (burst
and continuous), their graphs will be grouped by their queuing type with burst queuing displayed
on the Burst tab and continuous queuing displayed on the Static tab.
56 Medusa Labs Test Tools Suite

Test Analysis Tab Using the Graphical User Interface

Graph Legends

When there is only one plot on a graph, no legend is displayed. When there is more than one plot
on a graph, a legend is displayed as described below. See Figure 44.

• If multiple IO sizes are plotted, the legend is display at the right of the graph.

• If multiple statics are plotted, the legend is displayed above the graph.

Figure 44: Graphs Legends

Displaying the Highest Value on a Plot

The highest value on a plot can be identified by clicking any point on a plot or by click any legend.
Once the plot or the legend is clicked, a start is inserted on the plot showing the highest value or
point. If you have multiple plots on a graph, you can click once on each plot to show the highest
value of each. In Figure 45, the upper graph shows both plots displaying their highest value and
the lower graph shows one plot after it was clicked.

Figure 45: Displaying the Highest Value on a Plot
Medusa Labs Test Tools Suite 57

Using the Graphical User Interface Test Analysis Tab

Displaying Values on Line Graphs

You can display the value at any point on a line graph or a smooth line graph by moving the cursor
to a point on the plot and hovering over that point. A text box showing the values is displayed.

As shown in Figure 46, hovering your cursor over a point on the plot displays the values of the
graph’s coordinates at that point.

Figure 46: Value Displayed by Hovering the Mouse Cursor Over the Plot

Zooming In/Out

For graphs with Elapsed Time as the horizontal axis, you can zoom in to view the graph at a higher
resolution. Click the graph to give it focus, then zoom in (or out) using the:

• mouse’s scroll wheel
• keyboard’s +/- keys or the “q”/”w” keys

When the information becomes too wide to be displayed without scrolling, a scroll bar is provided
at the bottom of the graph.
58 Medusa Labs Test Tools Suite

Test Analysis Tab Using the Graphical User Interface

Saving the Graphs

Right-clicking a graph displays the image shown in Figure 47. You can save the graph as a
Comma-Separated Values file (.csv) to be used in a spreadsheet or as an image file. When you
select to save the graph as an image, you may save it as a Portable Network Graphic (.png), as a
JPEG (.jpg), or as bitmap (.bmp) image.

Figure 47: Saving the Graph

Test Log Tab

For the Test Log tab, data is provided for selections made in the History Tests pane only. If no
selection is made in the History Tests pane, the data from the first one will be automatically
displayed. This tab displays exactly what would be shown on your display by running the
command line on your computer. Until other tests are selected, the first test will be displayed by
default.

Figure 48: Test Log Tab
Medusa Labs Test Tools Suite 59

Using the Graphical User Interface Test Analysis Tab

Latency Histogram Tab

Latency histogram collects latency histogram per target. The collection bins are specified when
using the Custom configuration editor (see page 67). The bins are sorted by the magnitude of the
upper bound values, and the range of each bin is constructed such that the upper bound is as
specified and the lower bound is the upper bound of the previous bin. .

The Bin column lists the upper-bound of the range as you give it in the command line. The Upper
(msec) column is the upper bound value normalized to milliseconds. As an example, a 10us bin
would be normalized as 0.01 while 5s would be normalized as 5000. The other columns, R%, W%,
and R+W% display the percentage of Reads Write, or Read/Write operations with measured
latency that are within the bin; while CR%, CW%, and CR+W% display the cumulative value of
the percentage for Read, Write, or Read/Write operations with measured latency through each bin.
The last row, rest, is a bin that is added for operations with latency greater than the largest
specified bin. INF (for infinity) is inserted in this row as this bin cannot be normalized.

Figure 49: Latency Histogram Tab

Important: The Latency Histogram table (with its data) is only displayed when the drive (of
a configuration) utilizing Latency Histogram is selected in the History Summaries pane. If
no drive has been selected, the Latency Histogram tab advises you to select a drive.

Note: The Latency Histogram table will not be displayed when the test is running and it will
be available for viewing after all tests in the Test Group or Test Plan are completed.
60 Medusa Labs Test Tools Suite

Chapter 3
Using the Configuration Editors

In this chapter:

• “Using the Configuration Editors within the GUI” on page 62

• “Configuration Editors” on page 65

• “Custom Configuration Editor” on page 66

• “Integrity Configuration Editor” on page 80

• “Performance Configuration Editor” on page 91

• “Storage CLI Configuration Editor” on page 97

• “Socket Configuration Editor” on page 98

• “TCP App Simulation Configuration Editor” on page 109

• “Network CLI Configuration Editor” on page 118

• “SSD Secure Erase Configuration Editor” on page 119

• “SSD Trim Configuration Editor” on page 121
61

Using the Configuration Editors Using the Configuration Editors within the GUI

Using the Configuration Editors within the GUI

This chapter provides detailed information for editing configurations. Configurations will
normally be edited when creating new configurations in the Configurations area (page 32) or when
editing existing configurations in the Test Plans area (page 44). Each of these areas has the New
Configuration button described below. Each of the configuration editors are described in the
following pages.

New Configuration Button

This button opens the following drop-down list of configurations. Selecting one of these
configurations creates a new blank configuration in the User Configurations folder that is located
in the area below the button. You can also select the Configuration Chooser from the menu to
open the Configuration Chooser window.

Figure 50: Create New Configuration Button

Note: Configuration Editors are accessible using a variety of methods in the
Configurations area and the Test Plans area.

To access configurations from the Configurations area, refer to “Configurations
Area” on page 32.

To access configurations from the Test Plans area, refer to “New Configuration
Button” on page 35.
62 Medusa Labs Test Tools Suite

Using the Configuration Editors within the GUI Using the Configuration Editors

Configuration Chooser Window

The Configuration Chooser window allows you to select the configuration for the test that you
want to run.

Figure 51: Configuration Chooser Window

Select the radio button of the configuration you want to use and click OK.
Medusa Labs Test Tools Suite 63

Using the Configuration Editors Using the Configuration Editors within the GUI

The following configurations are available:

• Custom Configuration
Custom Configuration allows you to modify any and all options available through the tools. It
is intended for users who are finding that they cannot accomplish their testing through
Performance and/or Integrity configuration. An invalid configuration can be created and will
be run as configured. For more information on how to edit custom configuration settings, see
“Custom Configuration Editor” on page 66.

• Integrity Configuration
Integrity Configuration testing exposes the most common and useful options for ensuring that
a target is correctly writing and reading data. Data comparisons are allowed and different data
patterns can be used. Use Integrity Configuration when you want to ensure that data is being
properly written to and read from a device. For more information on how to edit integrity
configuration settings, see “Integrity Configuration Editor” on page 80.

• Performance Configuration
Performance Configuration testing disables options that are not beneficial to checking the
performance of a device. Data comparisons are disabled as well as a few logging options. Use
Performance Configuration when you want to make sure a device is performing at the
expected speed. For more information on how to edit performance configuration settings, see
“Performance Configuration Editor” on page 91.

• Storage Command Line Configuration
Storage Command Line Configuration supports pain and maim commands. For information
on using the Storage Command Line configuration editor, see “Storage CLI Configuration
Editor” on page 97.

• Socket Configuration
Socket Configuration only works with socket targets. Generally this configuration can be used
to test the performance of a network. The options will be limited to a small set of options. For
more information on how to edit socket configuration settings, see “Socket Configuration
Editor” on page 98.

• TCP Application Simulation Configuration
TCP Application Simulation Configuration is meant to emulate TCP traffic by using
transactional data instead of read/write mixes. Options are similar to that of a regular socket
configuration; however, traffic patterning replaces read/write I/O. For more information on
how to edit TCP application simulation configuration settings, see “TCP App Simulation
Configuration Editor” on page 109.

• Network Command Line Configuration
Network Command Line Configuration supports socket commands. For information on using
the Network Command Line configuration editor, see “Network CLI Configuration Editor” on
page 118.

• SSD Secure Erase
SSD Secure Erase Configuration allows you to erase an SSD disk before running other tests.
For information on using the SSD Secure Erase configuration editor, see “SSD Secure Erase
Configuration Editor” on page 119.

• SSD Trim
SSD Trim Configuration allows you to erase unused blocks to pre-condition a target SSD disk
before running other tests. For information on using the SSD Secure Erase configuration
editor, see “SSD Trim Configuration Editor” on page 121.
64 Medusa Labs Test Tools Suite

Configuration Editors Using the Configuration Editors

Configuration Editors

You can modify the different test configurations through the configuration editors. Each of the
configuration editors is described in the following sections:

• “Custom Configuration Editor” on page 66

• “Integrity Configuration Editor” on page 80

• “Performance Configuration Editor” on page 91

• “Storage CLI Configuration Editor” on page 97

• “Socket Configuration Editor” on page 98

• “TCP App Simulation Configuration Editor” on page 109

• “Network CLI Configuration Editor” on page 118

• “SSD Secure Erase Configuration Editor” on page 119

• “SSD Trim Configuration Editor” on page 121

Test a Range Controls

On the I/O Payload tab of each configuration editor, the Testing Threads, the Queue Depth, and
the Testing Sizes areas allow you to select a range for testing. This “Test a Range” option allows
you the set specific Start and End values for these parameters.

It also provides you Adding and Multiplying settings. Use the Adding and Multiplying to define
how the configuration gets from the start value to the end value.

Using Testing Threads as an example, if you have the thread count set to start at 1 and end at 64:

If you select Add by 1,
you will get thread counts of:

If you select Multiply by 2,
you will get thread counts of:

pain -t1
pain -t2
pain -t3
pain -t4
…
pain -t63
pain -t64

pain -t1
pain -t2
pain -t4
pain -t8
pain -t16
pain -t32
pain -t64
Medusa Labs Test Tools Suite 65

Using the Configuration Editors Custom Configuration Editor

Custom Configuration Editor

The Custom configuration editor allows you to edit available options when you want to create
unique testing configurations.

To open the editor, double-click the custom configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods discussed
in “Using the Configuration Editors within the GUI” on page 62.

The editor has seven tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

Note: Some of the options on the editor may be grayed out or not displayed based on the
methodology selected or other option dependencies. The editor opens in the same mode,
depending on the mode when it was closed.

• General (See page 67)
• I/O Payload (See page 68)
• I/O Behavior (See page 72)
• Advanced I/O (See page 75)

• Patterns (See page 75)
• Comments (See page 79)
• Command Lines (See page 79)
66 Medusa Labs Test Tools Suite

Custom Configuration Editor Using the Configuration Editors

General Tab

The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time to wait before starting the testing. This delay
allows devices the allotted time to get setup. The H (Hour), M (Minute), and S (Second)
numeric spinners allow you to delay the start of the testing up to 23 hours, 59 minutes, and 59
seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.

Every Target – sets the Max I/O Throughput value to apply to every target.

Every Thread – sets the Max I/O Throughput value to apply to every thread.

Max I/O Throughput – provides the maximum I/O throughput limitation value that is applied
to every target or thread.

External Application – runs any application of your choosing after every test has been run. For
example, if you want to run an independent application to collect data (such as a log file) from a
device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select the
application and wait times.

Application allows for you to browse to and select the desired application.

Wait for External Application allows you to input a period to wait for the application to start
to run. Tests tools will continue testing once the external application begins running.

Latency Histogram – collects latency histogram per target.

The collection bins are specified by entering the upper bound of each bin as a comma-separated
list in the Time Range Bin text box. The list is sorted by the magnitude of the upper bound values,
and the range of each bin is constructed such that the upper bound is as specified and the lower
bound is the upper bound of the previous bin.

Upper bounds may be specified as a floating point value (e.g. "0.5" or "4.5").
The time unit suffix may be used:

'n' for "nano" 'u' for "micro" 'm' for "milli" 's' for "seconds"

If no time unit suffix is given, 'm' for "milli" is assumed. .

Note: A quick and easy method of specifying the upper bound of each bin in the Time Range
Bin text box is by copying the values in the Example and pasting them into the text box.

You can then edit the values in the Time Range Bin text box if you choose.
Medusa Labs Test Tools Suite 67

Using the Configuration Editors Custom Configuration Editor

The Latency Histogram tab (see page 60) displays the collected histogram data.

Steady State

Steady State determines the steady state for a target across five consecutive test runs. With the test
plan set to run indefinitely or several times (5 times or more), when steady state is achieved, the
test plan will be stopped when the current test iteration completes. If the test plan is part of a
planning group, the next test plan in the group will begin.

If steady state is not achieved during the specified number of test runs, the test plan will
complete its last iteration and testing is terminated. Subsequent test plans in the planning
group are ignored. If you select to run the test plan indefinitely and steady state is not
achieved, you will need to stop the test manually.

Select the Check for Steady State check box to enable this feature. Once the check box is
selected, you can set the following options:

Tag text box allows you to enter an arbitrary string that is not 'r', 'iops', 'mbps' or 'lat' which can
be used to uniquely identify a steady state testing case. This tag will be added to the
steady-state.csv file name.

Tracking Variable group allows you to select one of the Tracking radio buttons and set the
Deviation percentages.

Tracking radio buttons:

IOPS Tracks IOPS for steady state. (default value)

MBPS Tracks MBPS for steady state.

IO Latency Tracks I/O latency for steady state.

Deviation percentages:

% Range Deviation: Allowed deviation of minimum and maximum tracked values
from the average. The default value is 20%.

% Slope Deviation: Allowed deviation of minimum and maximum points in a best
linear fit line through the tracked values. The default value is 10%.

I/O Payload Tab

The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing style
(synchronous or asynchronous), testing threads, queue depth, I/O operation size, read/write mix,
I/O type, I/O marking and signing, and logging level.
68 Medusa Labs Test Tools Suite

Custom Configuration Editor Using the Configuration Editors

Performance – Select the Enable Performance mode check box to enable the performance
mode. This mode increases the speed of testing by optimizing the use of internal memory buffers.
When this check box is selected, the following settings are automatically set:

Testing Style – Select Synchronous (Pain) or Asynchronous (Maim).

When Synchronous (Pain) is selected, set the Testing Threads area. Also select the appropriate
SCSI passthrough option from the drop-down menu. The options are listed below:

• SCSI Passthrough Off
• READ/WRITE 10
• READ/WRITE 10 + FUA (Forced Unit Access)
• READ/WRITE 16
• READ/WRITE 16 + FUA (Forced Unit Access)

When Asynchronous (Maim) is selected, set the Testing Threads area. Also set the Queue
Depth area.

Testing Threads – Set the threads for testing. Each thread executes a single I/O at a time, with
each thread starting at a different base offset. The number of threads successfully run is dependent
on the available memory resource. The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the Thread
Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check box.
Set the Thread Count Start and the Thread Count End values and then set the Adding or
Multiplying values. The adding/multiplying value increments the tested threads through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

Table 5: Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 177)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 177)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 166)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 174)
Medusa Labs Test Tools Suite 69

Using the Configuration Editors Custom Configuration Editor

Queue Depth – (displayed for Asynchronous (Maim) only) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker thread. The
value of queue depth successfully run is dependent on the available memory resource. The
practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric spinner.

You can also set a range for the queue depth by selecting the Test a Range of Queue Depths
check box. Set the Queue Depth Start and the Queue Depth End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the queue depth through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequential.

Select Keep Queue Depth Static to add -m16 option to the command line to use continuous
queuing. If this option is not selected, by default burst queuing will be used.

Select Strict Sequential to add the -m1 option to the command line which will make the test
have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down menu.
In this case, Units refers to a block size that is reported back from the target device; for example, a
block sizes of 512 bytes or some other block size that is standard to the target.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O Operation
Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size End values and
then set the Adding or Multiplying values. The adding/multiplying value increments the queue
depth through the specified range from the start to the end. Refer to “Test a Range Controls” on
page 65 for more information about the Adding and Multiplying selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation Size as
basis for the testing area. For synchronous tests (pain), the file size is equal to the block size.
For asynchronous tests (maim), the file size is the block size multiplied by the queue depth.

Specify Testing Area – Select this button and specify the file size or disk area to use per
worker thread. The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from the
drop-down menu. In this case, Units refers to a block size that is reported back from the target
device; for example, a block sizes of 512 bytes or some other block size that is standard to the
target.

Test Using the Entire Target – Select this check box to use the entire target for the test. This
is not applicable for file system and memory testing.
70 Medusa Labs Test Tools Suite

Custom Configuration Editor Using the Configuration Editors

Read/Write Mix – Select the read or write mode of the test.

Cycle Through the Read / Write Modes – Select this check box to cycle through the various
read/write modes. When this check box is selected, the following Read/Write mix settings are
not applicable and they are not displayed.

Read / Write – Select this option to have a balance of read and write testing.

Read Only – Select this option to have a read-only test. If this option is selected, the Force
Initial Write and Do Not Perform Initial Write radio buttons and will be available.

Force Initial Write – Performs a Write I/O once followed by continuous Reads.

Do Not Perform Initial Write – Performs pure read-only I/Os. This also disables data
comparison automatically.

Write Only – Select this option to have a write-only test.

Specify Custom Read/Write Mix – Setting the slider in the middle gives 50%/50% chance to
Read/Write to be the next IO. This results in a random mix of reads/writes.

Use the slider to set the percentage mix of random and sequential I/Os. Sliding it to the left
increases the write operations, while sliding it to the right increases the read operations.

• Sliding to the left most makes it a Write only test, where it writes a test pattern but
does not read it.

• Sliding to the right most makes it a Read only test, where it only returns the data that
exists in the file or device area.

• Setting the slider to the middle makes it a Read/Write test, where it repeatedly writes
a test pattern and then reads it back.

I/O Type – Choose from Forwards Only, Alternate Between Forwards and Backwards, First
FOP Forwards, Rest Backwards, Backwards Only, and Custom Mixture.

When you select Custom Mixture, use the slider to set the percentage mix of random and
sequential I/Os. Sliding it to the left increases the percentage of randomness, while sliding it to the
right increases the sequential operation.

This slider works in unison with the % Random and the % Sequential boxes so that the sum of
both values is 100 percent. As the slider is moved, the values in the % Random and the %
Sequential box values change to reflect the slider position.

Likewise, when either the % Random or the % Sequential boxes are changed by entering a value
or using the numeric spinner, the other box and the slider are adjusted to reflect the change.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down list.
For details on I/O signatures, refer to Appendix D, “I/O Signatures”.

No I/O Markings – No I/O signatures are applied to each sector of every write.

Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every write, unless
disabled.

Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as part of the
I/O signature. Timestamps are vital components for data integrity checking, and they are also
useful for debugging purposes.
Medusa Labs Test Tools Suite 71

Using the Configuration Editors Custom Configuration Editor

Add Time Stamps in Milliseconds to I/O – Select to choose a time stamp for the test session.
Select this option to add timestamp (in milliseconds) for the I/O event as part of the I/O
signature. Time stamps are vital components for data integrity checking, and they are also
useful for debugging purposes.

Override Session Id – Select this to override the default session ID and specify your own.
The default session ID is a semi-unique field in the I/O signature that created using the hex
values of the last two characters of the target name. It is way to help identify the host and
target when you are debugging.

Logging Level – Select the type of logging you want for the configuration to indicate the level of
information to be posted to the log file. The default option posts the maximum amount of
information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and console
performance output.

Outputs to logfile in test performance format (minimal logging) – Removes headers and
logs performance output only.

No outputs to logfile, minimal screen outputs, PRF log summary – No .log file generated,
and logs minimal screen output.

Disable CSV log – Standard logging, but .csv file will not be created.

Single line output with system name, performance, and errors – Includes system name
and other details on single output lines for easier importation or parsing.

Disable completion statistics in PRF file – Disables completion calculations and output. In
IOPS intensive tests where the CPU is heavily taxed, using this option may result in a slight
performance gain.

Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in the
textbox. See Chapter 4, “Using the Command Line Switches’’ for details of the command line
settings.

I/O Behavior Tab

The I/O Behavior tab allows you to specify data comparisons, set I/O behavior, setup triggering
options based on test results, use non-default target offsets, and setup error handlers.

Data Compare Mode – Click the drop-down list to choose a data comparison mode. A
byte-for-byte data comparison of write and read data will catch any possible data corruption. Data
comparison is usually recommended except in special cases, such as when the overhead of full
buffer comparisons decreases the I/O throughput to the target.

Disable Data Comparisons – Data comparisons are turned off.

Full byte-for-byte Comparison – Each byte is checked for integrity (default value).

Signature Comparison Only – (2-3 words every 512 bytes) Checks only the unique I/O
signature in the data buffer. This substantially reduces processor utilization in the host system.
72 Medusa Labs Test Tools Suite

Custom Configuration Editor Using the Configuration Editors

Session ID Comparison Only – (16 bit ID at 2nd word every 512 bytes) Compares only the
session ID used in the data signature. The session ID is generated from the host and target
names. This option can be used with the “Override default session ID” option and is usually
used in multi-initiator setups as a quick way of verifying that an initiator’s storage has not
been written to by another initiator.

Session ID Comparison, Followed by Full – This option is a combination of the Session ID
Comparison Only check with a full data comparison check. This is another method used in
multi-initiator setups, typically used when large file sizes are being tested, as a way of quickly
determining whether an illegal storage access has been made by another initiator.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – Select the check box and edit the time value in Hours, Minutes, and
Seconds to set the burst interval duration.

Specify Thread Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before issuing the next thread. This requires a multi-threaded test
definition.

For the start delay: 1) The first thread is issued. 2) There is a pause (for the time value of the
start delay.) 3) The next thread is issued. 4) There is a pause (for the time value of the start
delay.) 5) The next thread is issued. 6) and so forth.

Specify Target Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before starting an I/O to the next target. This requires multiple
targets in the test plan.

Retry Failed I/O – Select the check box and specify the number retries for failed I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours, Minutes,
and Seconds to set the delay between retries.

I/O Behavior dropdown list

Keep File Handles Open Between I/Os – Select this option to keep the target file
descriptor (handle) open rather than the default behavior of closing and re-opening it after
each FOP. This option is ignored for 'sock'.

Close File Handles After Every I/O – Select this option to close the target file descriptor
(handle) and re-open after each FOP.

Keep File Handles and Flush Every I/O – Select this option to sync (flush) after each
FOP. This makes a request to the operating system to commit all written data to the target
device, but it may not bypass the device cache. This option is ignored for 'sock'.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O to the
target device on critical errors with the idea that an analyzer can be set to trigger on the write data.
It also generates additional log files that are extremely useful in regards to debug and analysis. The
data value to trigger on occurs in the first two words of the data frame. The options associated with
this switch are:

Disable Triggering – disables the triggering option.

Write 0xCACACACA 0xCACACACA on Data Corruption
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCACACACA
for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error trigger.
Medusa Labs Test Tools Suite 73

Using the Configuration Editors Custom Configuration Editor

Write 0xDEADDEAD 0xDEADDEAD on Data Corruption
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEADDEAD
for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error trigger.

Select any of the two previous options to continue testing if data corruption or I/O error are
detected, but generate a trigger. A write command is sent to the target device on critical errors
with the idea that an analyzer can be set to trigger on the write data. Additional log files are
also generated that are extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer (or phase or write). Because the
data frame is consistent with FC or serial storage, but not parallel storage testing, the trigger
can be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or stuck
I/O is detected.

Stop Testing Immediately - No Trigger Written – Exits the application immediately and no
trigger is written.

Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA) trigger
and exits immediately.

Trigger External Application – Executes external application when triggers are detected.
Enter the application in the Application text box. Enter the arguments to use when running an
external Application in the Arguments text box.

This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box.

Target Offsets –

Override Default/Test Plan Offsets – Select this check box to override the MLTT default device
base offset setting. By default, I/O starts at a 1MB offset on the specified device.

Use Default Offset – uses the default offset.

Use a Shared Offset – allows multiple host systems or multiple sessions of the tools on a
single system to access the same device or file concurrently.

Specify Start Offset – specifies the starting offset number. Select from the dropdown menu
the unit of the value you specified. The offset value must be a multiple of the logical block size
of the target device.

Error Handlers – allow you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries to set number of retries for that error handler.
74 Medusa Labs Test Tools Suite

Custom Configuration Editor Using the Configuration Editors

To remove an error handler:

1 Select the error handler from the Error Handlers list.

2 Click Remove.

Advanced I/O Tab

The Advanced I/O tab allows you to specify custom read/write and I/O mixes.

Advanced Read / Write Mix

When you make changes in this area, the Read / Write Mix , the I/O Operation Size, and the Base
File Size on I/O Operation Size settings on the I/O Payload tab are rendered void and as such this
area is not displayed on the tab.

To specify a custom read/write mix:

1 Select the Specify Custom Read / Write Mix check box.

2 Click Add to add a new custom read/write mix.

3 Select the newly added custom read/write mix from the list.

4 Click the Rebalance to 100% button to automatically change the access percentage
values of the custom read/write mixes to total 100%.

5 Use the options in the Read/Write Specification panel to customize the read/write mix.

To remove a custom read/write mix:

1 Select the custom read/write mix from the list.

2 Click Remove.

Advanced I/O Mix

When you make changes in this area, the I/O Type settings on the I/O Payload tab are rendered
void and as such this area is not displayed on the tab.

To specify a custom I/O mix:

1 Select the Specify Custom I/O Mix check box.

2 Set the value for % Forward Sequential.

3 Set the value or % Backward Sequential.

4 Set the value for % Random.

Patterns Tab

The Patterns tab allows you to add specific patterns to the test, such as flip/flop patterns, inverted
patterns, pattern reversals, data scrambling, or unique data patterns.
Medusa Labs Test Tools Suite 75

Using the Configuration Editors Custom Configuration Editor

Available Patterns – This pane on the upper left of the tab page lists the patterns available for the
tests. Several folders are displayed for each available category. Click on the plus/minus sign beside
the category type folder to show the list of patterns available in that category.

Selected Patterns – This pane on the upper left of the tab page shows the selected patterns for the
current test configuration. This pane displays the test description, the test number, and the
command line for the test.

Figure 52: Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the Available
Patterns pane and drag it into the Selected Patterns pane. You can also click a folder and drag it
to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected Patterns
pane. The description of the selected pattern is displayed directly beneath the tab name. The
options change for the various types of patterns. Select the options for the specific test being
performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each transition
cycle and is often used to create bit-blink variations over bus architectures.

Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look like false
data corruptions. Reversals should be allowed anytime data comparisons are being performed
as a means of insuring that stale data is not being read.

Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within the
blinking data pattern. The term “flip/flop” means that the pattern starts at an initial value,
inverts (blinks) the value, returns to the initial value, then walks a bit and repeats the sequence.

Scramble Data – Shows options to pre-scramble data patterns according to SAS or SATA
specifications. When these patterns are written by MLTT, hardware scrambling will have the
effect of de-scrambling the data into the desired pattern. This is an effective means of signal
integrity testing on these architectures when combined with the Fibre Channel data patterns.
The SAS and SATA options will automatically use default frame data lengths for the
scrambler reset. The data length/reset interval can be overridden by specifying the data length
in bytes.
76 Medusa Labs Test Tools Suite

Custom Configuration Editor Using the Configuration Editors

No Data Scrambling – No scrambling of data patterns.

SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifications.

SATA Data Scrambling – Pre-scrambles data patterns according to SATA specifications.

Scramble Reset Interval – When you specify a reset interval, you override the data
length/reset interval for the scrambled pattern. Select the Specify Reset Interval check
box and then edit the number to specify the data length. The size can be set to Bytes, KB,
MB, GB, or Units from the drop-down menu. In this case, Units refers to a block size that
is reported back from the target device; for example, a block sizes of 512 bytes or some
other block size that is standard to the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to repeat each
cycle of a data pattern before moving to the next unit. Select the Cycle Data Pattern check
box and set the cycle length. In general, the unit of data pattern refers to its length in bytes or
bits. An example use of this option is to run an 8-bit pattern four times to produce, effectively,
a 32-bit pattern. In this case, each byte is run four times before moving on to the next byte.

Phase shift – This pertains to most blinking data patterns. If the Use Default Phase Shift or
Specify Phase Cycle Length options are selected, the data pattern shifts at the specified
cycle length, such that the square wave, created by the on/off bits in the blinking byte values,
reverses. The frequency of this shift is determined by the cycle length setting. Cycle length
multiplied by pattern length determines the shift frequency.

To use this feature, select either Use Default Phase Shift or Phase Cycle Length. When
Phase Cycle Length is selected, enter the number of cycles to run before doing the phase
shift. Change this value by entering a value in the text box or using the numeric spinner.

Data Pattern Specification – Allows you to specify a static value to use as the static repeating
pattern if you don’t want to use with the default. The default pattern for those is to use the
thread number for the pattern value. This is repeated continuously. Change this value using the
numeric spinner.

Random Seed – Specifies an initialization value for the pseudorandom number generator
used to generate a random pattern.

Walking Bit Options – This walks an opposing bit across the sequence when the pattern is a
blinking pattern.

Note: Each of the Walking Bit options are shown in Table 6. The opposing bits are
shaded in the table so the walking effect can be seen easily.
Medusa Labs Test Tools Suite 77

Using the Configuration Editors Custom Configuration Editor

Do Not Use Walking Bits – Walking bits are not used.

Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.

Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.

Walk Bits on Both Cycle – Walking bits are walked across both cycles.

Hold Pattern for cycles before walking – Keeps the walking bit in its position for the
specified number of cycles before advancing the bit to its the next position. The number of
cycles is maintained at each of the bit’s walking positions. Change this value by entering a
value in the text box or using the numeric spinner.

Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change this value by entering a
value in the text box or using the numeric spinner.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Table 6: Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110
78 Medusa Labs Test Tools Suite

Custom Configuration Editor Using the Configuration Editors

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab

The Command Lines tab allows you to display a listing of the command line commands required
by the GUI configuration. Select the List Command Lines button to display the listing. The
command line listing can be copied by selecting the command lines, right-clicking on the
selection, and choosing the Copy option. This is useful when using any of the modes that create
multiple tests with one configuration file (i.e. ranged values, cycle read/write modes, or multiple
data patterns, etc.)
Medusa Labs Test Tools Suite 79

Using the Configuration Editors Integrity Configuration Editor

Integrity Configuration Editor

The Integrity configuration editor allows you to edit the most common and useful options when
you want to ensure that a target is writing and reading data correctly.

To open the editor, double-click the Integrity configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods discussed
in “Using the Configuration Editors within the GUI” on page 62.

The editor has six tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab

The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time to wait before starting the testing. This delay
allows devices the allotted time to get setup. The H (Hour), M (Minute), and S (Second)
numeric spinners allow you to delay the start of the testing up to 23 hours, 59 minutes, and 59
seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.

Every Target – sets the Max I/O Throughput value to apply to every target.

Every Thread – sets the Max I/O Throughput value to apply to every thread.

Max I/O Throughput – provides the maximum I/O throughput limitation value that is applied
to every target or thread.

External Application – runs any application of your choosing after every test has been run. For
example, if you want to run an independent application to collect data (such as a log file) from a
device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select the
application and wait times.

Application allows for you to browse to and select the desired application.

Wait for External Application allows you to input a period to wait for the application to start
to run. Tests tools will continue testing once the external application begins running.

Note: Some of the options on the editor may be grayed out based on the methodology
selected or other option dependencies. The editor opens in the same mode, depending on the
mode when it was closed.

• General (See page 80)
• I/O Payload (See page 81)
• I/O Behavior (See page 84)

• Patterns (See page 86)
• Comments (See page 89)
• Command Lines (See page 90)
80 Medusa Labs Test Tools Suite

Integrity Configuration Editor Using the Configuration Editors

I/O Payload Tab

The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing style
(synchronous or asynchronous), testing threads, queue depth, I/O operation size, I/O type, I/O
marking and signing, and logging level.

Performance – Select the Enable Performance mode check box to enable the performance
mode. This mode increases the speed of testing by optimizing the use of internal memory buffers.
When this check box is selected, the following settings are automatically set:

Testing Style – Select Synchronous (Pain) or Asynchronous (Maim).

When Synchronous (Pain) is selected, set the Testing Threads area. Also select the appropriate
SCSI passthrough option from the drop-down menu. The options are listed below:

• SCSI Passthrough Off
• READ/WRITE 10
• READ/WRITE 10 + FUA (Forced Unit Access)
• READ/WRITE 16
• READ/WRITE 16 + FUA (Forced Unit Access)

When Asynchronous (Maim) is selected, set the Testing Threads area. Also set the Queue
Depth area.

Testing Threads – Set the threads for testing. Each thread executes a single I/O at a time, with
each thread starting at a different base offset. The number of threads successfully run is dependent
on the available memory resource. The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the Thread
Count numeric spinner.

Table 7: Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 177)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 177)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 166)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 174)
Medusa Labs Test Tools Suite 81

Using the Configuration Editors Integrity Configuration Editor

You can also set a range of threads to test by selecting the Test a Range of Threads check box.
Set the Thread Count Start and the Thread Count End values and then set the Adding or
Multiplying values. The adding/multiplying value increments the tested threads through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

Queue Depth – (displayed for Asynchronous (Maim) only) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker thread. The
value of queue depth successfully run is dependent on the available memory resource. The
practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric spinner.

You can also set a range for the queue depth by selecting the Test a Range of Queue Depths
check box. Set the Queue Depth Start and the Queue Depth End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the queue depth through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequential.

Select Keep Queue Depth Static to add -m16 option to the command line to use continuous
queuing. If this option is not selected, by default burst queuing will be used.

Select Strict Sequential to add the -m1 option to the command line which will make the test
have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down menu.
In this case, Units refers to a block size that is reported back from the target device; for example, a
block sizes of 512 bytes or some other block size that is standard to the target.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O Operation
Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size End values and
then set the Adding or Multiplying values. The adding/multiplying value increments the queue
depth through the specified range from the start to the end. Refer to “Test a Range Controls” on
page 65 for more information about the Adding and Multiplying selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation Size as
basis for the testing area. For synchronous tests (pain), the file size is equal to the block size.
For asynchronous tests (maim), the file size is the block size multiplied by the queue depth.

Specify Testing Area – Select this button and specify the file size or disk area to use per
worker thread. The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from the
drop-down menu. In this case, Units refers to a block size that is reported back from the target
device; for example, a block sizes of 512 bytes or some other block size that is standard to the
target.
82 Medusa Labs Test Tools Suite

Integrity Configuration Editor Using the Configuration Editors

Test Using the Entire Target – Select this check box to use the entire target for the test. This
is not applicable for file system and memory testing.

I/O Type – Choose from Forwards Only, Alternate Between Forwards and Backwards, First
FOP Forwards, Rest Backwards, Backwards Only, and Custom Mixture.

When you select Custom Mixture, use the slider to set the percentage mix of random and
sequential I/Os. Sliding it to the left increases the percentage of randomness, while sliding it to the
right increases the sequential operation.

This slider works in unison with the % Random and the % Sequential boxes so that the
sum of both values is 100 percent. As the slider is moved, the values in the % Random and
the % Sequential box values change to reflect the slider position.

Likewise, when either the % Random or the % Sequential boxes are changed by entering a value
or using the numeric spinner, the other box and the slider are adjusted to reflect the change.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down list.
For details on I/O signatures, refer to Appendix D, “I/O Signatures”.

No I/O Markings – No I/O signatures are applied to each sector of every write.

Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every write, unless
disabled.

Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as part of the
I/O signature. Timestamps are vital components for data integrity checking, and they are also
useful for debugging purposes.

Add Time Stamps in Milliseconds to I/O – Select to choose a time stamp for the test session.
Select this option to add timestamp (in milliseconds) for the I/O event as part of the I/O
signature. Time stamps are vital components for data integrity checking, and they are also
useful for debugging purposes.

Override Session Id – Select this to override the default session ID and specify your own.
The default session ID is a semi-unique field in the I/O signature that created using the hex
values of the last two characters of the target name. It is way to help identify the host and
target when you are debugging.

Logging Level – Select the type of logging you want for the configuration to indicate the level of
information to be posted to the log file. The default option posts the maximum amount of
information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and console
performance output.

Outputs to logfile in test performance format (minimal logging) – Removes headers and
logs performance output only.

No outputs to logfile, minimal screen outputs, PRF log summary – No .log file generated,
and logs minimal screen output.

Disable CSV log – Standard logging, but .csv file will not be created.

Single line output with system name, performance, and errors – Includes system name
and other details on single output lines for easier importation or parsing.
Medusa Labs Test Tools Suite 83

Using the Configuration Editors Integrity Configuration Editor

Disable completion statistics in PRF file – Disables completion calculations and output. In
IOPS intensive tests where the CPU is heavily taxed, using this option may result in a slight
performance gain.

Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in the
textbox. See Chapter 4, “Using the Command Line Switches’’ for details of the command line
settings.

I/O Behavior Tab

The I/O Behavior tab allows you to specify data comparisons, set I/O behavior, setup triggering
options based on test results, use non-default target offsets, and setup error handlers.

Data Compare Mode – Click the drop-down list to choose a data comparison mode. A
byte-for-byte data comparison of write and read data will catch any possible data corruption. Data
comparison is usually recommended except in special cases, such as when the overhead of full
buffer comparisons decreases the I/O throughput to the target.

Disable Data Comparisons – Data comparisons are turned off.

Full byte-for-byte Comparison – Each byte is checked for integrity (default value).

Signature Comparison Only – (2-3 words every 512 bytes) Checks only the unique I/O
signature in the data buffer. This substantially reduces processor utilization in the host system.

Session ID Comparison Only – (16 bit ID at 2nd word every 512 bytes) Compares only the
session ID used in the data signature. The session ID is generated from the host and target
names. This option can be used with the “Override default session ID” option and is usually
used in multi-initiator setups as a quick way of verifying that an initiator’s storage has not
been written to by another initiator.

Session ID Comparison, Followed by Full – This option is a combination of the Session ID
Comparison Only check with a full data comparison check. This is another method used in
multi-initiator setups, typically used when large file sizes are being tested, as a way of quickly
determining whether an illegal storage access has been made by another initiator.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – Select the check box and edit the time value in Hours, Minutes, and
Seconds to set the burst interval duration.

Specify Thread Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before issuing the next thread. This requires a multi-threaded test
definition.

For the start delay: 1) The first thread is issued. 2) There is a pause (for the time value of the
start delay.) 3) The next thread is issued. 4) There is a pause (for the time value of the start
delay.) 5) The next thread is issued. 6) and so forth.
84 Medusa Labs Test Tools Suite

Integrity Configuration Editor Using the Configuration Editors

Specify Target Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before starting an I/O to the next target. This requires multiple
targets in the test plan.

Retry Failed I/O – Select the check box and specify the number retries for failed I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours, Minutes,
and Seconds to set the delay between retries.

I/O Behavior dropdown list

Keep File Handles Open Between I/Os – Select this option to keep the target file
descriptor (handle) open rather than the default behavior of closing and re-opening it after
each FOP. This option is ignored for 'sock'.

Close File Handles After Every I/O – Select this option to close the target file descriptor
(handle) and re-open after each FOP.

Keep File Handles and Flush Every I/O – Select this option to sync (flush) after each
FOP. This makes a request to the operating system to commit all written data to the target
device, but it may not bypass the device cache. This option is ignored for 'sock'.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O to the
target device on critical errors with the idea that an analyzer can be set to trigger on the write data.
It also generates additional log files that are extremely useful in regards to debug and analysis. The
data value to trigger on occurs in the first two words of the data frame. The options associated with
this switch are:

Disable Triggering – disables the triggering option.

Write 0xCACACACA 0xCACACACA on Data Corruption,
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCACACACA
for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error trigger.

Writes 0xDEADDEAD 0xDEADDEAD on Data Corruption,
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEADDEAD
for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error trigger.

Select any of the two previous options to continue testing if data corruption or I/O error are
detected, but generate a trigger. A write command is sent to the target device on critical errors
with the idea that an analyzer can be set to trigger on the write data. Additional log files are
also generated that are extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer (or phase or write). Because the
data frame is consistent with FC or serial storage, but not parallel storage testing, the trigger
can be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or stuck
I/O is detected.

Stop Testing Immediately - No Trigger Written – Exits the application immediately and no
trigger is written.

Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA) trigger
and exits immediately.

Trigger External Application – Executes external application when triggers are detected.
Enter the application in the Application text box. Enter the arguments to use when running an
external Application in the Arguments text box.
Medusa Labs Test Tools Suite 85

Using the Configuration Editors Integrity Configuration Editor

This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box.

Target Offsets –

Override Default/Test Plan Offsets – Select this check box to override the MLTT default device
base offset setting. By default, I/O starts at a 1MB offset on the specified device.

Use Default Offset – uses the default offset.

Use a Shared Offset – allows multiple host systems or multiple sessions of the tools on a
single system to access the same device or file concurrently.

Specify Start Offset – specifies the starting offset number. Select from the dropdown menu
the unit of the value you specified. The offset value must be a multiple of the logical block size
of the target device.

Error Handlers – allows you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries so that you can set number of retries for that error handler.

To remove an error handler:

1 Select the error handler from the Error Handlers list.

2 Click Remove.

Patterns Tab

The Patterns tab allows you to add specific patterns to the test, such as flip/flop patterns, inverted
patterns, pattern reversals, data scrambling, or unique data patterns.

Available Patterns – This pane on the upper left of the tab page lists the patterns available for the
tests. Several folders are displayed for each available category. Click on the plus/minus sign beside
the category type folder to show the list of patterns available in that category.

Selected Patterns – This pane on the upper left of the tab page shows the selected patterns for the
current test configuration. This pane displays the test description, the test number, and the
command line for the test.
86 Medusa Labs Test Tools Suite

Integrity Configuration Editor Using the Configuration Editors

Figure 53: Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the Available
Patterns pane and drag it into the Selected Patterns pane. You can also click a folder and drag it
to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected Patterns
pane. The description of the selected pattern is displayed directly beneath the tab name. The
options change for the various types of patterns. Select the options for the specific test being
performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each transition
cycle and is often used to create bit-blink variations over bus architectures.

Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look like false
data corruptions. Reversals should be allowed anytime data comparisons are being performed
as a means of insuring that stale data is not being read.

Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within the
blinking data pattern. The term “flip/flop” means that the pattern starts at an initial value,
inverts (blinks) the value, returns to the initial value, then walks a bit and repeats the sequence.

Scramble Data – Shows options to pre-scramble data patterns according to SAS or SATA
specifications. When these patterns are written by MLTT, hardware scrambling will have the
effect of de-scrambling the data into the desired pattern. This is an effective means of signal
integrity testing on these architectures when combined with the Fibre Channel data patterns.
The SAS and SATA options will automatically use default frame data lengths for the
scrambler reset. The data length/reset interval can be overridden by specifying the data length
in bytes.

No Data Scrambling – No scrambling of data patterns.

SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifications.

SATA Data Scrambling – Pre-scrambles data patterns according to SATA specifications.
Medusa Labs Test Tools Suite 87

Using the Configuration Editors Integrity Configuration Editor

Scramble Reset Interval – When you specify a reset interval, you override the data
length/reset interval for the scrambled pattern. Select the Specify Reset Interval check
box and then edit the number to specify the data length. The size can be set to Bytes, KB,
MB, GB, or Units from the drop-down menu. In this case, Units refers to a block size that
is reported back from the target device; for example, a block sizes of 512 bytes or some
other block size that is standard to the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to repeat each
cycle of a data pattern before moving to the next unit. Select the Cycle Data Pattern check
box and set the cycle length. In general, the unit of data pattern refers to its length in bytes or
bits. An example use of this option is to run an 8-bit pattern four times to produce, effectively,
a 32-bit pattern. In this case, each byte is run four times before moving on to the next byte.

Phase shift – This pertains to most blinking data patterns. If the Use Default Phase Shift or
Specify Phase Cycle Length options are selected, the data pattern shifts at the specified
cycle length, such that the square wave, created by the on/off bits in the blinking byte values,
reverses. The frequency of this shift is determined by the cycle length setting. Cycle length
multiplied by pattern length determines the shift frequency.

To use this feature, select either Use Default Phase Shift or Phase Cycle Length. When
Phase Cycle Length is selected, enter the number of cycles to run before doing the phase
shift. Change this value by entering a value in the text box or using the numeric spinner.

Data Pattern Specification – Allows you to specify a static value to use as the static repeating
pattern if you don’t want to use with the default. The default pattern for those is to use the
thread number for the pattern value. This is repeated continuously. Change this value using the
numeric spinner.

Random Seed – Specifies an initialization value for the pseudorandom number generator
used to generate a random pattern.

Walking Bit Options – This walks an opposing bit across the sequence when the pattern is a
blinking pattern.

Note: Each of the Walking Bit options are shown in Table 8. The opposing bits are
shaded in the table so the walking effect can be seen easily.
88 Medusa Labs Test Tools Suite

Integrity Configuration Editor Using the Configuration Editors

Do Not Use Walking Bits – Walking bits are not used.

Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.

Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.

Walk Bits on Both Cycle – Walking bits are walked across both cycles.

Hold Pattern for cycles before walking – Keeps the walking bit in its position for the
specified number of cycles before advancing the bit to its the next position. The number of
cycles is maintained at each of the bit’s walking positions. Change this value by entering a
value in the text box or using the numeric spinner.

Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change this value by entering a
value in the text box or using the numeric spinner.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Table 8: Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110
Medusa Labs Test Tools Suite 89

Using the Configuration Editors Integrity Configuration Editor

Command Lines Tab

The Command Lines tab allows you to display a listing of the command line commands required
by the GUI configuration. Select the List Command Lines button to display the listing. The
command line listing can be copied by selecting the command lines, right-clicking on the
selection, and choosing the Copy option. This is useful when using any of the modes that create
multiple tests with one configuration file (i.e. ranged values, cycle read/write modes, or multiple
data patterns, etc.)
90 Medusa Labs Test Tools Suite

Performance Configuration Editor Using the Configuration Editors

Performance Configuration Editor

The Performance configuration editor allows you to make a configuration that ensures a device is
performing at the expected speed. It is intended for users that find they are not accomplishing their
testing requirements through Integrity configurations provided in the default samples.

To open the editor, double-click the Performance configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods discussed
in “Using the Configuration Editors within the GUI” on page 62.

The editor has four tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab

The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time to wait before starting the testing. This delay
allows devices the allotted time to get setup. The H (Hour), M (Minute), and S (Second)
numeric spinners allow you to delay the start of the testing up to 23 hours, 59 minutes, and 59
seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.

Every Target – sets the Max I/O Throughput value to apply to every target.

Every Thread – sets the Max I/O Throughput value to apply to every thread.

Max I/O Throughput – provides the maximum I/O throughput limitation value that is applied
to every target or thread.

External Application – runs any application of your choosing after every test has been run. For
example, if you want to run an independent application to collect data (such as a log file) from a
device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select the
application and wait times.

Application allows for you to browse to and select the desired application.

Wait for External Application allows you to input a period to wait for the application to start
to run. Tests tools will continue testing once the external application begins running.

Note: Some of the options on the editor may be grayed out based on the methodology
selected or other option dependencies. The editor opens in the same mode depending on the
mode when it was closed.

• General (See page 91)
• I/O Payload (See page 92)

• Comments (See page 96)
• Command Lines (See page 96)
Medusa Labs Test Tools Suite 91

Using the Configuration Editors Performance Configuration Editor

Steady State

Steady State determines the steady state for a target across five consecutive test runs. With the test
plan set to run indefinitely or several times (5 times or more), when steady state is achieved, the
test plan will be stopped when the test plan iteration is complete. The planning group will start the
next test plan.

If steady state is not achieved during the specified number of test runs, the test plan will
complete its last iteration and testing is terminated. Subsequent test plans in the planning
group are ignored. If you select to run the test plan indefinitely and steady state is not
achieved, you will need to stop the test manually.

Select the Check for Steady State check box to enable this feature. Once the check box is
selected, you can set the following options:

Tag text box allows you to enter an arbitrary string that is not 'r', 'iops', 'mbps' or 'lat' which can
be used to uniquely identify a steady state testing case. This tag will be added to the
steady-state.csv file name.

Tracking Variable group allows you to select one of the Tracking radio buttons and set the
Deviation percentages.

Tracking radio buttons:

IOPS Tracks IOPS for steady state. (default value)

MBPS Tracks MBPS for steady state.

IO Latency Tracks I/O latency for steady state.

Deviation percentages:

% Range Deviation: Allowed deviation of minimum and maximum tracked values
from the average. The default value is 20%.

% Slope Deviation: Allowed deviation of minimum and maximum points in a best
linear fit line through the tracked values. The default value is 10%.

I/O Payload Tab

The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing style
(synchronous or asynchronous), testing threads, queue depth, testing sizes, I/O operation sizes,
read/write mix, I/O type, and logging levels.
92 Medusa Labs Test Tools Suite

Performance Configuration Editor Using the Configuration Editors

Performance – Select the Enable Performance mode check box to enable the performance
mode. This mode increases the speed of testing by optimizing the use of internal memory buffers.
When this check box is selected, the following settings are automatically set:

Testing Style – Select Synchronous (Pain) or Asynchronous (Maim).

When Synchronous (Pain) is selected, set the Testing Threads area. Also select the appropriate
SCSI passthrough option from the drop-down menu. The options are listed below:

• SCSI Passthrough Off
• READ/WRITE 10
• READ/WRITE 10 + FUA (Forced Unit Access)
• READ/WRITE 16
• READ/WRITE 16 + FUA (Forced Unit Access)

When Asynchronous (Maim) is selected, set the Testing Threads area. Also set the Queue
Depth area.

Testing Threads – Set the threads for testing. Each thread executes a single I/O at a time, with
each thread starting at a different base offset. The number of threads successfully run is dependent
on the available memory resource. The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the Thread
Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check box.
Set the Thread Count Start and the Thread Count End values and then set the Adding or
Multiplying values. The adding/multiplying value increments the tested threads through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

Queue Depth – (displayed for Asynchronous (Maim) only) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker thread. The
value of queue depth successfully run is dependent on the available memory resource. The
practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric spinner.

Table 9: Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 177)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 177)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 166)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 174)
Medusa Labs Test Tools Suite 93

Using the Configuration Editors Performance Configuration Editor

You can also set a range for the queue depth by selecting the Test a Range of Queue Depths
check box. Set the Queue Depth Start and the Queue Depth End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the queue depth through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequential.

Select Keep Queue Depth Static to add -m16 option to the command line to use continuous
queuing. If this option is not selected, by default burst queuing will be used.

Select Strict Sequential to add the -m1 option to the command line which will make the test
have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down menu.
In this case, Units refers to a block size that is reported back from the target device; for example, a
block sizes of 512 bytes or some other block size that is standard to the target.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O Operation
Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size End values and
then set the Adding or Multiplying values. The adding/multiplying value increments the queue
depth through the specified range from the start to the end. Refer to “Test a Range Controls” on
page 65 for more information about the Adding and Multiplying selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation Size as
basis for the testing area. For synchronous tests (pain), the file size is equal to the block size.
For asynchronous tests (maim), the file size is the block size multiplied by the queue depth.

Specify Testing Area – Select this button and specify the file size or disk area to use per
worker thread. The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from the
drop-down menu. In this case, Units refers to a block size that is reported back from the target
device; for example, a block sizes of 512 bytes or some other block size that is standard to the
target.

Test Using the Entire Target – Select this check box to use the entire target for the test. This
is not applicable for file system and memory testing.

Read/Write Mix – Select the read or write mode of the test.

Cycle Through the Read / Write Modes – Select this check box to cycle through the various
read/write modes. When this check box is selected, the following Read/Write mix settings are
not applicable and they are not displayed.

Read / Write – Select this option to have a balance of read and write testing.

Read Only – Select this option to have a read-only test. If this option is selected, the Force
Initial Write and Do Not Perform Initial Write radio buttons and will be available.

Force Initial Write – Performs a Write I/O once followed by continuous Reads.
94 Medusa Labs Test Tools Suite

Performance Configuration Editor Using the Configuration Editors

Do Not Perform Initial Write – Performs pure read-only I/Os. This also disables data
comparison automatically.

Write Only – Select this option to have a write-only test.

Specify Custom Read/Write Mix – Setting the slider in the middle gives 50%/50% chance to
Read/Write to be the next IO. This results in a random mix of reads/writes.

Use the slider to set the percentage mix of random and sequential I/Os. Sliding it to the left
increases the write operations, while sliding it to the right increases the read operations.

• Sliding to the left most makes it a Write only test, where it writes a test pattern but
does not read it.

• Sliding to the right most makes it a Read only test, where it only returns the data that
exists in the file or device area.

• Setting the slider to the middle makes it a Read/Write test, where it repeatedly writes
a test pattern and then reads it back.

I/O Type – Choose from Forwards Only, Alternate Between Forwards and Backwards, First
FOP Forwards, Rest Backwards, Backwards Only, and Custom Mixture.

When you select Custom Mixture, use the slider to set the percentage mix of random and
sequential I/Os. Sliding it to the left increases the percentage of randomness, while sliding it to the
right increases the sequential operation.

This slider works in unison with the % Random and the % Sequential boxes so that the
sum of both values is 100 percent. As the slider is moved, the values in the % Random and
the % Sequential box values change to reflect the slider position.

Likewise, when either the % Random or the % Sequential boxes are changed by entering a value
or using the numeric spinner, the other box and the slider are adjusted to reflect the change.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down list.
For details on I/O signatures, refer to Appendix D, “I/O Signatures”.

No I/O Markings – No I/O signatures are applied to each sector of every write.

Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every write, unless
disabled.

Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as part of the
I/O signature. Timestamps are vital components for data integrity checking, and they are also
useful for debugging purposes.

Add Time Stamps in Milliseconds – Select to choose a time stamp for the test session. Select
this option to add timestamp (in milliseconds) for the I/O event as part of the I/O signature.
Time stamps are vital components for data integrity checking, and they are also useful for
debugging purposes.

Override Session Id – Select this to override the default session ID and specify your own.
The default session ID is a semi-unique field in the I/O signature that created using the hex
values of the last two characters of the target name. It is way to help identify the host and
target when you are debugging.
Medusa Labs Test Tools Suite 95

Using the Configuration Editors Performance Configuration Editor

Logging Level – Select the type of logging you want for the configuration to indicate the level of
information to be posted to the log file. The default option posts the maximum amount of
information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and console
performance output.

Outputs to logfile in test performance format (minimal logging) – Removes headers and
logs performance output only.

No outputs to logfile, minimal screen outputs, PRF log summary – No .log file generated,
and logs minimal screen output.

Disable CSV log – Standard logging, but .csv file will not be created.

Single line output with system name, performance, and errors – Includes system name
and other details on single output lines for easier importation or parsing.

Disable completion statistics in PRF file – Disables completion calculations and output. In
IOPS intensive tests where the CPU is heavily taxed, using this option may result in a slight
performance gain.

Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in the
textbox. See Chapter 4, “Using the Command Line Switches’’ for details of the command line
settings.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab

The Command Lines tab allows you to display a listing of the command line commands required
by the GUI configuration. Select the List Command Lines button to display the listing. The
command line listing can be copied by selecting the command lines, right-clicking on the
selection, and choosing the Copy option. This is useful when using any of the modes that create
multiple tests with one configuration file (i.e. ranged values, cycle read/write modes, or multiple
data patterns, etc.)
96 Medusa Labs Test Tools Suite

Storage CLI Configuration Editor Using the Configuration Editors

Storage CLI Configuration Editor

The Storage CLI configuration editor saves pain and maim command lines so the command lines
can be sent from the configuration editor.

To open the editor, double-click the Storage CLI configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods discussed
in “Using the Configuration Editors within the GUI” on page 62.

The editor has two tabs for specifying testing parameters and information:

Command Line Tab

The Command Line tab allows you to enter and send pain and maim commands. This is useful
when you want to run a command from the GUI.

The Paste button pastes a previously-copied command line to the configuration editor.

The Copy button copies the configuration editor’s command line once it is selected.

For sock commands, refer to “Network CLI Configuration Editor” on page 118.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Note: The pain and maim commands sent from this editor do not have error checking. If
invalid commands are entered and sent, these commands are ignored and are not reported.

• Command Line • Comments
Medusa Labs Test Tools Suite 97

Using the Configuration Editors Socket Configuration Editor

Socket Configuration Editor

The Socket configuration editor allows you to edit available options relevant to network tests with
TCP/IP sockets.

To open the editor, double-click the Socket configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods discussed
in “Using the Configuration Editors within the GUI” on page 62.

To use more advanced parameters, click the Show Ranged Controls check box.

The editor has seven tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab

The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time to wait before starting the testing. This delay
allows devices the allotted time to get setup. The H (Hour), M (Minute), and S (Second)
numeric spinners allow you to delay the start of the testing up to 23 hours, 59 minutes, and 59
seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.

Every Target – sets the Max I/O Throughput value to apply to every target.

Every Thread – sets the Max I/O Throughput value to apply to every thread.

Max I/O Throughput – provides the maximum I/O throughput limitation value that is applied
to every target or thread.

External Application – runs any application of your choosing after every test has been run. For
example, if you want to run an independent application to collect data (such as a log file) from a
device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select the
application and wait times.

Application allows for you to browse to and select the desired application.

Wait for External Application allows you to input a period to wait for the application to start
to run. Tests tools will continue testing once the external application begins running.

Socket Type – Sets the protocol for the Socket configuration.

TCP (Transmission Control Protocol) – Sets the socket configuration protocol to TCP.

• General (See page 99)
• I/O Payload (See page 99)
• I/O Behavior (See page 102)
• Advanced I/O (See page 104)

• Patterns (See page 105)
• Comments (See page 108)
• Command Lines (See page 108)
98 Medusa Labs Test Tools Suite

Socket Configuration Editor Using the Configuration Editors

UDP (User Datagram Protocol) – Sets the socket configuration protocol to UDP.

I/O Payload Tab

The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing threads,
I/O operation size, read/write mix, I/O marking and signing, and logging level. Queue depth is also
available after other parameters on the tab are changed.

Performance – Select the Enable Performance mode check box to enable the performance
mode. This mode increases the speed of testing by optimizing the use of internal memory buffers.
When this check box is selected, the following settings are automatically set:

Testing Threads – Set the threads for testing. Each thread executes a single I/O at a time, with
each thread starting at a different base offset. The number of threads successfully run is dependent
on the available memory resource. The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the Thread
Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check box.
Set the Thread Count Start and the Thread Count End values and then set the Adding or
Multiplying values. The adding/multiplying value increments the tested threads through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

Queue Depth – (available after other tab parameters are changed) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker thread. The
value of queue depth successfully run is dependent on the available memory resource. The
practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric spinner.

Table 10: Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 177)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 177)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 166)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 174)
Medusa Labs Test Tools Suite 99

Using the Configuration Editors Socket Configuration Editor

You can also set a range for the queue depth by selecting the Test a Range of Queue Depths
check box. Set the Queue Depth Start and the Queue Depth End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the queue depth through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequential.

Select Keep Queue Depth Static to add -m16 option to the command line to use continuous
queuing. If this option is not selected, by default burst queuing will be used.

Select Strict Sequential to add the -m1 option to the command line which will make the test
have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down menu.
In this case, Units refers to a block size that is reported back from the target device; for example, a
block sizes of 512 bytes or some other block size that is standard to the target.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O Operation
Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size End values and
then set the Adding or Multiplying values. The adding/multiplying value increments the queue
depth through the specified range from the start to the end. Refer to “Test a Range Controls” on
page 65 for more information about the Adding and Multiplying selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation Size as
basis for the testing area. For synchronous tests (pain), the file size is equal to the block size.
For asynchronous tests (maim), the file size is the block size multiplied by the queue depth.

Specify Testing Area – Select this button and specify the file size or disk area to use per
worker thread. The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from the
drop-down menu. In this case, Units refers to a block size that is reported back from the target
device; for example, a block sizes of 512 bytes or some other block size that is standard to the
target.

Read/Write Mix – Select the read or write mode of the test.

Cycle Through the Read / Write Modes – Select this check box to cycle through the various
read/write modes. When this check box is selected, the following Read/Write mix settings are
not applicable and they are not displayed.

Read / Write – Select this option to have a balance of read and write testing.

Read Only – Select this option to have a read-only test. If this option is selected, the Force
Initial Write and Do Not Perform Initial Write radio buttons and will be available.

Force Initial Write – Performs a Write I/O once followed by continuous Reads.

Do Not Perform Initial Write – Performs pure read-only I/Os. This also disables data
comparison automatically.
100 Medusa Labs Test Tools Suite

Socket Configuration Editor Using the Configuration Editors

Write Only – Select this option to have a write-only test.

Specify Custom Read/Write Mix – Setting the slider in the middle gives 50%/50% chance to
Read/Write to be the next IO. This results in a random mix of reads/writes.

Use the slider to set the percentage mix of random and sequential I/Os. Sliding it to the left
increases the write operations, while sliding it to the right increases the read operations.

• Sliding to the left most makes it a Write only test, where it writes a test pattern but
does not read it.

• Sliding to the right most makes it a Read only test, where it only returns the data that
exists in the file or device area.

• Setting the slider to the middle makes it a Read/Write test, where it repeatedly writes
a test pattern and then reads it back.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down list.
For details on I/O signatures, refer to Appendix D, “I/O Signatures”.

No I/O Markings – No I/O signatures are applied to each sector of every write.

Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every write, unless
disabled.

Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as part of the
I/O signature. Timestamps are vital components for data integrity checking, and they are also
useful for debugging purposes.

Add Time Stamps in Milliseconds to I/O – Select to choose a time stamp for the test session.
Select this option to add timestamp (in milliseconds) for the I/O event as part of the I/O
signature. Time stamps are vital components for data integrity checking, and they are also
useful for debugging purposes.

Override Session Id - Select this to override the default session ID and specify your own. The
default session ID is a semi-unique field in the I/O signature that created using the hex values
of the last two characters of the target name. It is way to help identify the host and target when
you are debugging.

Logging Level – Select the type of logging you want for the configuration to indicate the level of
information to be posted to the log file. The default option posts the maximum amount of
information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and console
performance output.

Outputs to logfile in test performance format (minimal logging) – Removes headers and
logs performance output only.

No outputs to logfile, minimal screen outputs, PRF log summary – No .log file generated,
and logs minimal screen output.

Disable CSV log – Standard logging, but .csv file will not be created.

Single line output with system name, performance, and errors – Includes system name
and other details on single output lines for easier importation or parsing.
Medusa Labs Test Tools Suite 101

Using the Configuration Editors Socket Configuration Editor

Disable completion statistics in PRF file – Disables completion calculations and output. In
IOPS intensive tests where the CPU is heavily taxed, using this option may result in a slight
performance gain.

Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in the
textbox. See Chapter 4, “Using the Command Line Switches’’ for details of the command line
settings.

I/O Behavior Tab

The I/O Behavior tab allows you to specify data comparisons, set I/O behavior, setup triggering
options based on test results, use non-default target offsets, and setup error handlers.

Data Compare Mode – Click the drop-down list to choose a data comparison mode. A
byte-for-byte data comparison of write and read data will catch any possible data corruption. Data
comparison is usually recommended except in special cases, such as when the overhead of full
buffer comparisons decreases the I/O throughput to the target.

Disable Data Comparisons – Data comparisons are turned off.

Full byte-for-byte Comparison – Each byte is checked for integrity (default value).

Signature Comparison Only – (2-3 words every 512 bytes) Checks only the unique I/O
signature in the data buffer. This substantially reduces processor utilization in the host system.

Session ID Comparison Only – (16 bit ID at 2nd word every 512 bytes) Compares only the
session ID used in the data signature. The session ID is generated from the host and target
names. This option can be used with the “Override default session ID” option and is usually
used in multi-initiator setups as a quick way of verifying that an initiator’s storage has not
been written to by another initiator.

Session ID Comparison, Followed by Full – This option is a combination of the Session ID
Comparison Only check with a full data comparison check. This is another method used in
multi-initiator setups, typically used when large file sizes are being tested, as a way of quickly
determining whether an illegal storage access has been made by another initiator.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – Select the check box and edit the time value in Hours, Minutes, and
Seconds to set the burst interval duration.

Specify Thread Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before issuing the next thread. This requires a multi-threaded test
definition.

For the start delay: 1) The first thread is issued. 2) There is a pause (for the time value of the
start delay.) 3) The next thread is issued. 4) There is a pause (for the time value of the start
delay.) 5) The next thread is issued. 6) and so forth.
102 Medusa Labs Test Tools Suite

Socket Configuration Editor Using the Configuration Editors

Specify Target Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before starting an I/O to the next target. This requires multiple
targets in the test plan.

Retry Failed I/O – Select the check box and specify the number retries for failed I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours, Minutes,
and Seconds to set the delay between retries.

I/O Behavior dropdown list

Keep File Handles Open Between I/Os – Select this option to keep the target file
descriptor (handle) open rather than the default behavior of closing and re-opening it after
each FOP. This option is ignored for 'sock'.

Close File Handles After Every I/O – Select this option to close the target file descriptor
(handle) and re-open after each FOP.

Keep File Handles and Flush Every I/O – Select this option to sync (flush) after each
FOP. This makes a request to the operating system to commit all written data to the target
device, but it may not bypass the device cache. This option is ignored for 'sock'.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O to the
target device on critical errors with the idea that an analyzer can be set to trigger on the write data.
It also generates additional log files that are extremely useful in regards to debug and analysis. The
data value to trigger on occurs in the first two words of the data frame. The options associated with
this switch are:

Disable Triggering – disables the triggering option.

Write 0xCACACACA 0xCACACACA on Data Corruption
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCACACACA
for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error trigger.

Write 0xDEADDEAD 0xDEADDEAD on Data Corruption
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEADDEAD
for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error trigger.

Select any of the two previous options to continue testing if data corruption or I/O error are
detected, but generate a trigger. A write command is sent to the target device on critical errors
with the idea that an analyzer can be set to trigger on the write data. Additional log files are
also generated that are extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer (or phase or write). Because the
data frame is consistent with FC or serial storage, but not parallel storage testing, the trigger
can be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or stuck
I/O is detected.

Stop Testing Immediately - No Trigger Written – Exits the application immediately and no
trigger is written.

Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA) trigger
and exits immediately.

Trigger External Application – Executes external application when triggers are detected.
Enter the application in the Application text box. Enter the arguments to use when running an
external Application in the Arguments text box.
Medusa Labs Test Tools Suite 103

Using the Configuration Editors Socket Configuration Editor

This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box.

Target Offsets –

Override Default/Test Plan Offsets – Select this check box to override the MLTT default device
base offset setting. By default, I/O starts at a 1MB offset on the specified device.

Use Default Offset – uses the default offset.

Use a Shared Offset – allows multiple host systems or multiple sessions of the tools on a
single system to access the same device or file concurrently.

Specify Start Offset – specifies the starting offset number. Select from the dropdown menu
the unit of the value you specified. The offset value must be a multiple of the logical block size
of the target device.

Error Handlers – allow you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries to set number of retries for that error handler.

To remove an error handler:

1 Select the error handler from the Error Handlers list.

2 Click Remove.

Advanced I/O Tab

The Advanced I/O tab allows you to specify custom read/writes.

Advanced Read / Write Mix

When you make changes in this area, the Read / Write Mix settings on the I/O Payload tab are
rendered void and as such this area is not displayed on the tab.

To specify a custom read/write mix:

1 Select the Specify Custom Read / Write Mix check box.

2 Click Add to add a new custom read/write mix.

3 Select the newly added custom read/write mix from the list.
104 Medusa Labs Test Tools Suite

Socket Configuration Editor Using the Configuration Editors

4 Click the Rebalance to 100% button to automatically change the access percentage
values of the custom read/write mixes to total 100%.

5 Use the options in the Read/Write Specification panel to customize the read/write mix.

To remove a custom read/write mix:

1 Select the custom read/write mix from the list.

2 Click Remove.

Patterns Tab

The Patterns tab allows you to add specific patterns to the test, such as flip/flop patterns, inverted
patterns, pattern reversals, data scrambling, or unique data patterns.

Available Patterns – This pane on the upper left of the tab page lists the patterns available for the
tests. Several folders are displayed for each available category. Click on the plus/minus sign beside
the category type folder to show the list of patterns available in that category.

Selected Patterns – This pane on the upper left of the tab page shows the selected patterns for the
current test configuration. This pane displays the test description, the test number, and the
command line for the test.

Figure 54: Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the Available
Patterns pane and drag it into the Selected Patterns pane. You can also click a folder and drag it
to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected Patterns
pane. The description of the selected pattern is displayed directly beneath the tab name. The
options change for the various types of patterns. Select the options for the specific test being
performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each transition
cycle and is often used to create bit-blink variations over bus architectures.
Medusa Labs Test Tools Suite 105

Using the Configuration Editors Socket Configuration Editor

Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look like false
data corruptions. Reversals should be allowed anytime data comparisons are being performed
as a means of insuring that stale data is not being read.

Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within the
blinking data pattern. The term “flip/flop” means that the pattern starts at an initial value,
inverts (blinks) the value, returns to the initial value, then walks a bit and repeats the sequence.

Scramble Data – Shows options to pre-scramble data patterns according to SAS or SATA
specifications. When these patterns are written by MLTT, hardware scrambling will have the
effect of de-scrambling the data into the desired pattern. This is an effective means of signal
integrity testing on these architectures when combined with the Fibre Channel data patterns.
The SAS and SATA options will automatically use default frame data lengths for the
scrambler reset. The data length/reset interval can be overridden by specifying the data length
in bytes.

No Data Scrambling – No scrambling of data patterns.

SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifications.

SATA Data Scrambling – Pre-scrambles data patterns according to SATA specifications.

Scramble Reset Interval – When you specify a reset interval, you override the data
length/reset interval for the scrambled pattern. Select the Specify Reset Interval check
box and then edit the number to specify the data length. The size can be set to Bytes, KB,
MB, GB, or Units from the drop-down menu. In this case, Units refers to a block size that
is reported back from the target device; for example, a block sizes of 512 bytes or some
other block size that is standard to the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to repeat each
cycle of a data pattern before moving to the next unit. Select the Cycle Data Pattern check
box and set the cycle length. In general, the unit of data pattern refers to its length in bytes or
bits. An example use of this option is to run an 8-bit pattern four times to produce, effectively,
a 32-bit pattern. In this case, each byte is run four times before moving on to the next byte.

Phase shift – This pertains to most blinking data patterns. If the Use Default Phase Shift or
Specify Phase Cycle Length options are selected, the data pattern shifts at the specified
cycle length, such that the square wave, created by the on/off bits in the blinking byte values,
reverses. The frequency of this shift is determined by the cycle length setting. Cycle length
multiplied by pattern length determines the shift frequency.

To use this feature, select either Use Default Phase Shift or Phase Cycle Length. When
Phase Cycle Length is selected, enter the number of cycles to run before doing the phase
shift. Change this value by entering a value in the text box or using the numeric spinner.

Data Pattern Specification – Allows you to specify a static value to use as the static repeating
pattern if you don’t want to use with the default. The default pattern for those is to use the
thread number for the pattern value. This is repeated continuously. Change this value using the
numeric spinner.

Random Seed – Specifies an initialization value for the pseudorandom number generator
used to generate a random pattern.
106 Medusa Labs Test Tools Suite

Socket Configuration Editor Using the Configuration Editors

Walking Bit Options – This walks an opposing bit across the sequence when the pattern is a
blinking pattern.

Do Not Use Walking Bits – Walking bits are not used.

Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.

Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.

Hold Pattern for cycles before walking – Keeps the walking bit in its position for the
specified number of cycles before advancing the bit to its the next position. The number of
cycles is maintained at each of the bit’s walking positions. Change this value by entering a
value in the text box or using the numeric spinner.

Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change this value by entering a
value in the text box or using the numeric spinner.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Note: Each of the Walking Bit options are shown in Table 11. The opposing bits are
shaded in the table so the walking effect can be seen easily.

Table 11: Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110
Medusa Labs Test Tools Suite 107

Using the Configuration Editors Socket Configuration Editor

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab

The Command Lines tab allows you to display a listing of the command line commands required
by the GUI configuration. Select the List Command Lines button to display the listing. The
command line listing can be copied by selecting the command lines, right-clicking on the
selection, and choosing the Copy option. This is useful when using any of the modes that create
multiple tests with one configuration file (i.e. ranged values, cycle read/write modes, or multiple
data patterns, etc.)
108 Medusa Labs Test Tools Suite

TCP App Simulation Configuration Editor Using the Configuration Editors

TCP App Simulation Configuration Editor

The TCP App Simulation configuration editor allows you edit settings for emulating TCP traffic
by using transactional data instead of read/write mixes.

To open the editor, double-click the TCP App Simulation configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods discussed
in “Using the Configuration Editors within the GUI” on page 62.

The editor has six tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab

The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time to wait before starting the testing. This delay
allows devices the allotted time to get setup. The H (Hour), M (Minute), and S (Second)
numeric spinners allow you to delay the start of the testing up to 23 hours, 59 minutes, and 59
seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.

Every Target – sets the Max I/O Throughput value to apply to every target.

Every Thread – sets the Max I/O Throughput value to apply to every thread.

Max I/O Throughput – provides the maximum I/O throughput limitation value that is applied
to every target or thread.

External Application – runs any application of your choosing after every test has been run. For
example, if you want to run an independent application to collect data (such as a log file) from a
device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select the
application and wait times.

Application allows for you to browse to and select the desired application.

Note: Some of the options on the editor may be grayed out based on the methodology
selected or other option dependencies. The editor opens in the same mode, either in basic or
advanced, depending on the mode when it was closed.

• General (See page 109)
• I/O Payload (See page 110)
• I/O Behavior (See page 112)

• Patterns (See page 114)
• Comments (See page 116)
• Command Lines (See page 117)
Medusa Labs Test Tools Suite 109

Using the Configuration Editors TCP App Simulation Configuration Editor

Wait for External Application allows you to input a period to wait for the application to start
to run. Tests tools will continue testing once the external application begins running.

I/O Payload Tab

The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing threads,
requests from the client, responses from the server side, and the logging level selections. Queue
depth is also available after other parameters on the tab are changed.

Performance performance mode – Select the Enable Performance mode check box to enable
the performance mode. This mode increases the speed of testing by optimizing the use of internal
memory buffers. When this check box is selected, the following settings are automatically set:

Testing Threads – Set the threads for testing. Each thread executes a single I/O at a time, with
each thread starting at a different base offset. The number of threads successfully run is dependent
on the available memory resource. The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the Thread
Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check box.
Set the Thread Count Start and the Thread Count End values and then set the Adding or
Multiplying values. The adding/multiplying value increments the tested threads through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

Queue Depth – (available after other tab parameters are changed) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker thread. The
value of queue depth successfully run is dependent on the available memory resource. The
practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric spinner.

Table 12: Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 177)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 177)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 166)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 174)
110 Medusa Labs Test Tools Suite

TCP App Simulation Configuration Editor Using the Configuration Editors

You can also set a range for the queue depth by selecting the Test a Range of Queue Depths
check box. Set the Queue Depth Start and the Queue Depth End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the queue depth through the
specified range from the start to the end. Refer to “Test a Range Controls” on page 65 for more
information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequential.

Select Keep Queue Depth Static to add -m16 option to the command line to use continuous
queuing. If this option is not selected, by default burst queuing will be used.

Select Strict Sequential to add the -m1 option to the command line which will make the test have
continuous queuing and strict sequential access.

Requests (from client side) - Add or remove requests from the client side.

To add a request:

1 Click Add.

2 Adjust the settings for the request by specifying size and traffic percentage.

3 Select the Rebalance to 100% button to balance the traffic across the requests.

To remove a request:

1 Select the request from the list.

2 Click Remove.

Responses (from server side) - Add or remove responses from the server side.

To add a response:

1 Click Add.

2 Adjust the settings for the response by specifying size and traffic percentage.

3 Select the Rebalance to 100% button to balance the traffic across the responses.

To remove a response:

1 Select the response from the list.

2 Click Remove.

Logging Level – Select the type of logging you want for the configuration to indicate the level of
information to be posted to the log file. The default option posts the maximum amount of
information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and console
performance output.

Outputs to logfile in test performance format (minimal logging) – Removes headers and
logs performance output only.

No outputs to logfile, minimal screen outputs, PRF log summary – No .log file generated,
and logs minimal screen output.

Disable CSV log – Standard logging, but .csv file will not be created.
Medusa Labs Test Tools Suite 111

Using the Configuration Editors TCP App Simulation Configuration Editor

Single line output with system name, performance, and errors – Includes system name
and other details on single output lines for easier importation or parsing.

Disable completion statistics in PRF file – Disables completion calculations and output. In
IOPS intensive tests where the CPU is heavily taxed, using this option may result in a slight
performance gain.

Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in the
textbox. See “Using the Command Line Switches” on page 123 for details of the command line
settings.

I/O Behavior Tab

The I/O Behavior tab allows you to specify Transactions, I/O Behavior, Triggering, and Error
Handling options based on test results.

Transactions – Select the options for transactions in this panel.

1 Select Specify the number of transactions per connection to set minimum and maximum
number of transactions.

2 Set the Minimum transactions.

3 Set the Maximum transactions. As an alternative, you can select the Use minimum check
box to use the minimum transactions number as the maximum value also.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – Select the check box and edit the time value in Hours, Minutes, and
Seconds to set the burst interval duration.

Specify Thread Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before issuing the next thread. This requires a multi-threaded test
definition.

For the start delay: 1) The first thread is issued. 2) There is a pause (for the time value of the
start delay.) 3) The next thread is issued. 4) There is a pause (for the time value of the start
delay.) 5) The next thread is issued. 6) and so forth.

Specify Target Start Delay – Select the check box and edit the time value in Hours, Minutes,
and Seconds to set the delay before starting an I/O to the next target. This requires multiple
targets in the test plan.

Retry Failed I/O – Select the check box and specify the number retries for failed I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours, Minutes,
and Seconds to set the delay between retries.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O to the
target device on critical errors with the idea that an analyzer can be set to trigger on the write data.
It also generates additional log files that are extremely useful in regards to debug and analysis. The
data value to trigger on occurs in the first two words of the data frame. The options associated with
this switch are:
112 Medusa Labs Test Tools Suite

TCP App Simulation Configuration Editor Using the Configuration Editors

Disable Triggering – disables the triggering option.

Write 0xCACACACA 0xCACACACA on Data Corruption
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCACACACA
for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error trigger.

Writes 0xDEADDEAD 0xDEADDEAD on Data Corruption
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEADDEAD
for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error trigger.

Select any of the two previous options to continue testing if data corruption or I/O error are
detected, but generate a trigger. A write command is sent to the target device on critical errors
with the idea that an analyzer can be set to trigger on the write data. Additional log files are
also generated that are extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer (or phase or write). Because the
data frame is consistent with FC or serial storage, but not parallel storage testing, the trigger
can be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or stuck
I/O is detected.

Stop Testing Immediately - No Trigger Written – Exits the application immediately and no
trigger is written.

Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA) trigger
and exits immediately.

Trigger External Application – Executes external application when triggers are detected.
Enter the application in the Application text box. Enter the arguments to use when running an
external Application in the Arguments text box.

This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box.

Error Handlers – allow you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries to set number of retries for that error handler.

To remove an error handler:

1 Select the error handler from the Error Handlers list.

2 Click Remove.
Medusa Labs Test Tools Suite 113

Using the Configuration Editors TCP App Simulation Configuration Editor

Patterns Tab

The Patterns tab allows you to add specific patterns to the test, such as flip/flop patterns, inverted
patterns, pattern reversals, data scrambling, or unique data patterns.

Available Patterns – This pane on the upper left of the tab page lists the patterns available for the
tests. Several folders are displayed for each available category. Click on the plus/minus sign beside
the category type folder to show the list of patterns available in that category.

Selected Patterns – This pane on the upper left of the tab page shows the selected patterns for the
current test configuration. This pane displays the test description, the test number, and the
command line for the test.

Figure 55: Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the Available
Patterns pane and drag it into the Selected Patterns pane. You can also click a folder and drag it
to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected Patterns
pane. The description of the selected pattern is displayed directly beneath the tab name. The
options change for the various types of patterns. Select the options for the specific test being
performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each transition
cycle and is often used to create bit-blink variations over bus architectures.

Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look like false
data corruptions. Reversals should be allowed anytime data comparisons are being performed
as a means of insuring that stale data is not being read.

Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within the
blinking data pattern. The term “flip/flop” means that the pattern starts at an initial value,
inverts (blinks) the value, returns to the initial value, then walks a bit and repeats the sequence.
114 Medusa Labs Test Tools Suite

TCP App Simulation Configuration Editor Using the Configuration Editors

Scramble Data – Shows options to pre-scramble data patterns according to SAS or SATA
specifications. When these patterns are written by MLTT, hardware scrambling will have the
effect of de-scrambling the data into the desired pattern. This is an effective means of signal
integrity testing on these architectures when combined with the Fibre Channel data patterns.
The SAS and SATA options will automatically use default frame data lengths for the
scrambler reset. The data length/reset interval can be overridden by specifying the data length
in bytes.

No Data Scrambling – No scrambling of data patterns.

SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifications.

SATA Data Scrambling – Pre-scrambles data patterns according to SATA specifications.

Scramble Reset Interval – When you specify a reset interval, you override the data
length/reset interval for the scrambled pattern. Select the Specify Reset Interval check
box and then edit the number to specify the data length. The size can be set to Bytes, KB,
MB, GB, or Units from the drop-down menu. In this case, Units refers to a block size that
is reported back from the target device; for example, a block sizes of 512 bytes or some
other block size that is standard to the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to repeat each
cycle of a data pattern before moving to the next unit. Select the Cycle Data Pattern check
box and set the cycle length. In general, the unit of data pattern refers to its length in bytes or
bits. An example use of this option is to run an 8-bit pattern four times to produce, effectively,
a 32-bit pattern. In this case, each byte is run four times before moving on to the next byte.

Phase shift – This pertains to most blinking data patterns. If the Use Default Phase Shift or
Specify Phase Cycle Length options are selected, the data pattern shifts at the specified
cycle length, such that the square wave, created by the on/off bits in the blinking byte values,
reverses. The frequency of this shift is determined by the cycle length setting. Cycle length
multiplied by pattern length determines the shift frequency.

To use this feature, select either Use Default Phase Shift or Phase Cycle Length. When
Phase Cycle Length is selected, enter the number of cycles to run before doing the phase
shift. Change this value by entering a value in the text box or using the numeric spinner.

Data Pattern Specification – Allows you to specify a static value to use as the static repeating
pattern if you don’t want to use with the default. The default pattern for those is to use the
thread number for the pattern value. This is repeated continuously. Change this value using the
numeric spinner.

Random Seed – Specifies an initialization value for the pseudorandom number generator
used to generate a random pattern.

Walking Bit Options – This walks an opposing bit across the sequence when the pattern is a
blinking pattern.

Note: Each of the Walking Bit options are shown in Table 13. The opposing bits are
shaded in the table so the walking effect can be seen easily.
Medusa Labs Test Tools Suite 115

Using the Configuration Editors TCP App Simulation Configuration Editor

Do Not Use Walking Bits – Walking bits are not used.

Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.

Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.

Walk Bits on Both Cycle – Walking bits are walked across both cycles.

Hold Pattern for cycles before walking – Keeps the walking bit in its position for the
specified number of cycles before advancing the bit to its the next position. The number of
cycles is maintained at each of the bit’s walking positions. Change this value by entering a
value in the text box or using the numeric spinner.

Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change this value by entering a
value in the text box or using the numeric spinner.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Table 13: Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110
116 Medusa Labs Test Tools Suite

TCP App Simulation Configuration Editor Using the Configuration Editors

Command Lines Tab

The Command Lines tab allows you to display a listing of the command line commands required
by the GUI configuration. Select the List Command Lines button to display the listing. The
command line listing can be copied by selecting the command lines, right-clicking on the
selection, and choosing the Copy option. This is useful when using any of the modes that create
multiple tests with one configuration file (i.e. ranged values, cycle read/write modes, or multiple
data patterns, etc.)
Medusa Labs Test Tools Suite 117

Using the Configuration Editors Network CLI Configuration Editor

Network CLI Configuration Editor

The Network CLI configuration editor saves sock command lines so the command lines can be
sent from the configuration editor.

To open the editor, double-click the Network CLI configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods discussed
in “Using the Configuration Editors within the GUI” on page 62.

The editor has two tabs for specifying testing parameters and information:

Command Line Tab

The Command Line tab allows you to enter sock commands. This is useful when you want to run
a command from the GUI.

The Paste button pastes a previously-copied command line to the configuration editor.

The Copy button copies the configuration editor’s command line once it is selected.

For pain and maim commands, refer to “Storage CLI Configuration Editor” on page 97.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Note: The sock commands sent from this editor do not have error checking. If invalid
commands are entered and sent, these commands are ignored and are not reported.

• Command Line • Comments
118 Medusa Labs Test Tools Suite

SSD Secure Erase Configuration Editor Using the Configuration Editors

SSD Secure Erase Configuration Editor

The SSD Secure Erase configuration editor erases the data on a Solid State Drive (SSD) leaving it
in a clean state after the test process using the configuration is complete.

To open the editor, double-click the Solid State Drive (SSD) Secure Erase configuration that you
added to the User Configuration folder in the Configurations area. You may also use one of the
methods discussed in “Using the Configuration Editors within the GUI” on page 62.

The editor has three tabs for specifying testing parameters and information:

SE Operation Tab

The SE Operation tab allows you to select the type of secure erase that you want to perform.
Optionally, you may provide a time-out value to end the test if the erasure operation has not
completed in the specified time.

Mode – sets the erasure level for the solid state drive used as the target. The erasure levels are:

Standard erase for ATA or format unit for SCSI –

• For ATA devices, this selection goes through and marks each cell as empty.

• For SCSI devices, this selection requests that the device server format the medium
into application accessible logical blocks.

Enhanced erase for ATA or sanitize for SCSI –

• For ATA devices, this selection writes predetermined data patterns (set by the
manufacturer) to all user data areas, including sectors that are no longer in use due to
reallocation.

• For SCSI devices, this selection performs a format unit command then performs a
pattern overwrite of the accessible logical blocks.

Time Out – Sets the Max allowed time (a time-out value) which will end the test if the erasure
operation has not completed in the specified time. If the erase operation is not completed, the
program will exit with the TIMEOUT_ERROR program exit code. If no time out value is set (Max
allowed time is left in the default value of 0H 0M 0S), there is no active time out setting and the
erasure operation is allowed to run until it is complete.

You can set the maximum time allowed by entering the value or clicking the Max allowed time
numeric spinner.

Note: The Individual Test Setup settings in the Planning Group Editor (shown in Figure 26
on page 40) and the Test Plan Editor (shown in Figure 27 on page 42) have no effect on the
SSD Secure Erase configuration.

• SE Operation
• Command Lines

• Comments
Medusa Labs Test Tools Suite 119

Using the Configuration Editors SSD Secure Erase Configuration Editor

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab

The Command Lines tab allows you to display a listing of the command line commands required
by the GUI configuration. Select the List Command Lines button to display the listing. The
command line listing can be copied by selecting the command lines, right-clicking on the
selection, and choosing the Copy option.
120 Medusa Labs Test Tools Suite

SSD Trim Configuration Editor Using the Configuration Editors

SSD Trim Configuration Editor

The SSD Trim configuration erases specified data blocks. It may be run as a target Solid State
Drive (SSD) pre-conditioning step before running I/O tests.

To open the editor, double-click the Solid State Drive (SSD) Trim configuration that you added to
the User Configuration folder in the Configurations area. You may also use one of the methods
discussed in “Using the Configuration Editors within the GUI” on page 62.

The editor has three tabs for specifying testing parameters and information:

Trim Tab

The Trim tab allows you to set the parameters for erasing specified blocks from the target SSD.

Threads – sets the number of threads on the SSD being pre-conditioned for testing. A trim
command is executed for each specified thread. The number of threads is dependent on the
available memory resource. The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the Thread
Count numeric spinner.

Testing Sizes – sets the data block sizes to be erased. Testing Sizes settings include:

Specify Testing Area – Select this button and specify the file size or disk area to erase per
thread.

The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from the drop-down menu. In this
case, Units refers to a block size that is reported back from the target disk; for example, a
block sizes of 512 bytes or some other block size that is standard to the target.

Test Using the Entire Target – Select this check box to erase the entire data area on the target
SSD.

Target Offsets – begins the trim/erase operation at the specified offset.

Starting Offset – specifies the starting offset number of the erase operation. Select from the
dropdown menu the unit of the value you specified. The offset value must be a multiple of the
logical block size of the target disk.

Time Out – Sets the Max allowed time (a time-out value) which will end the test if the trim/erase
operation has not completed in the specified time. If the operation is not completed, the program
will exit with the TIMEOUT_ERROR program exit code. If no time out value is set (Max allowed
time is left in the default value of 0H 0M 0S), there is no active time out setting and the erasure
operation is allowed to run until it is complete.

Note: The Individual Test Setup settings in the Planning Group Editor (shown in Figure 26
on page 40) and the Test Plan Editor (shown in Figure 27 on page 42) have no effect on the
SSD Trim configuration.

• Trim Operation
• Command Lines

• Comments
Medusa Labs Test Tools Suite 121

Using the Configuration Editors SSD Trim Configuration Editor

You can set the maximum time allowed by entering the value or clicking the Max allowed time
numeric spinner.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab

The Command Lines tab allows you to display a listing of the command line commands required
by the GUI configuration. Select the List Command Lines button to display the listing. The
command line listing can be copied by selecting the command lines, right-clicking on the
selection, and choosing the Copy option.
122 Medusa Labs Test Tools Suite

Chapter 4
Using the Command Line Switches

In this chapter:

• “Syntax” on page 124

• “Basic Switches” on page 125

• “Switches by Category” on page 135
123

Using the Command Line Switches Syntax

Syntax

You use switches at the command line to enter the parameters you want for your test. A basic
command line entry contains the following:

Application name, target, I/O size, file size, queue depth or thread
count, data pattern

The following example shows the syntax for a test:

pain -f\\.\physicaldrive2 -b512k 100 -t8 -125

where:

pain is the application name.

-f is the target (see “Target Specification” on page 127)

\\.\physicaldrive2 is the target device.

-b512k is the buffer size (see “I/O Size” on page 129)

100 is the file size (see “File Size” on page 130).

-t8 is the thread count (see “Thread Count” on page 132)

-125 is the data pattern (see “Data Pattern” on page 134)

Important: You can specify the command line switches in any order. All Medusa Labs Test
Tools (MLTT) switches are case sensitive.
124 Medusa Labs Test Tools Suite

Basic Switches Using the Command Line Switches

Basic Switches

This section describes the switches you use for most test runs. The switches are listed by function.

Target Specification

-f Target

specifies the desired target

I/O Size

-b Buffer size

specifies the buffer size for each I/O

File Size

file_size

specifies the desired “file” size as a number

Queue Depth

-Q Queue_Depth (Maim only)

specifies the maximum number of outstanding I/Os when using Maim

Thread Count

-t Thread Count

specifies the number of worker threads when using Pain

Data Pattern

-l Data Pattern

specifies the desired data pattern number

Online Help

-h Online Help

displays the online help
Medusa Labs Test Tools Suite 125

Using the Command Line Switches Basic Switches

Default Session ID

-A Default Session ID

overrides the default session ID in data signatures with the specified 16-bit ID

Timestamps

-U I/O Signature Timestamp Units

sets timestamps in I/O signature in seconds or in milliseconds

License Client Operation

-Z License Client Operation

manages remote license operation

Seconds Between Performance Samples

-Y Seconds Between Performance Samples

specifies the number of seconds between performance samples displayed on the screen and printed
to log files.
126 Medusa Labs Test Tools Suite

Basic Switches Using the Command Line Switches

Target Specification

-f Target

Usage:

-ftarget

Description:

Use -f to specify the desired target. The target can be a file, logical drive, or physical drive that
resides in the host system or is externally attached via SCSI, USB, FireWire, LAN, SAN, and
others.

Also, when using sock, the target may specify the hostname or an IP (or IPv6) address of a peer for
TCP/IP network I/O.

Default:

If no target is specified, each worker thread creates a file in the current directory.

Examples:

Physical: -f\\.\physicaldrive1

Logical: -f\\.\g:

File: -fg:\file1.dat

Linux device: -f/dev/sdc

Solaris device: -f/dev/rdsk/c1t1d0s2

TCP/IP peer (sock): -fhostname or -f10.23.1.101 or -f10.23.1.80:10.23.1.101
(where 10.23.1.80 is a specific local IP if there is more than one network interface to choose
from). When specifying an IPv6 address pair, use ‘-’ to separate the local and remote addresses
(e.g. -ffe80::c62c:3ff:fe08:a66c%en0-fe80::221:9bff:fe50:90ec). For a link-local
IPv6 address pair, the scope ID of the outgoing interface must be appended to the local address
(e.g. “%en0” or “%5”).

The tools also support a multi-target mode, where multiple targets can be accessed in a single
process. The Catapult -t switch option performs this automatically. See “-t Multi-target mode” on
page 226. Multiple targets may also be specified manually in one of several manners:

• Create a text file called “targets.dat” that contains desired targets, one per line. Catapult can
create this file for you. For example:

catapult -p -t

Then pass this file name, with path if necessary, to pain or maim with the -f switch.

pain -ftargets.dat

• You can also specify multiple targets on the command line, separated by commas. For
example:

pain -f\\.\physicaldrive1,\\.\physicaldrive2

Note: If the switch is not specified, one file of the specified size is created in the current
directory by each worker thread.
Medusa Labs Test Tools Suite 127

Using the Command Line Switches Basic Switches

• You can also use a prefix system, where a common prefix is terminated with a semi-colon,
followed by suffixes that are comma separated. For example:

pain -f\\.\physicaldrive;1,2,3

• Generate TCP/IP I/O to 10.23.1.101 and 10.23.1.102 from 10.23.1.80.

sock -f”10.23.1.80:10.23.1.;101,102”

Note: on Unix systems, the shell interprets ';' as the command separation character;
therefore, the target name should be quoted. For example, the shell interprets the
following:

pain -f/dev/sd;b,c,d

as a sequence of the two commands shown below:

pain -f/dev/sd

b,c,d

To prevent such errors, the target specification must have quotes added as shown:

pain -f"/dev/sd;b,c,d"

Warning: Physical and logical drive access is destructive!
Existing data WILL be overwritten.
128 Medusa Labs Test Tools Suite

Basic Switches Using the Command Line Switches

I/O Size

-b Buffer size

Usage:

-bbuffer_size[units]

Description:

Use -b to specify the buffer size for each I/O. This equates to the I/O block size, from the
application level. You can specify the buffer size in bytes or use a numeric value and unit
designator:

m = megabytes

k = kilobytes

b = bytes (default)

u = LB (logical block) units, usually 512 bytes

Examples:

-b1m = 1 megabyte (1048576 bytes.)

-b4k = 4 kilobytes (4096 bytes.)

-b8192 = 8 kilobytes

Default:

The default buffer size in MLTT is 64 kilobytes (65536 bytes).

Note: For physical drive targets, buffer size must be a multiple of device's logical block size
(usually 512 bytes.) For other types of targets (such as a regular file), the buffer size must be a
multiple of 512 bytes.
Medusa Labs Test Tools Suite 129

Using the Command Line Switches Basic Switches

File Size

file_size

Usage:

file_size

Description:

The desired “file” size is specified as a number, with no preceding switch argument. You can
specify the size in bytes or use a numeric value and unit designator:

g = gigabytes

m = megabytes (default)

k = kilobytes

u = LB (logical block) size units, usually 512 bytes

Examples:

1g

100m

512k

The file size must be at least the same as the I/O size, or a multiple of the I/O size.

Maximum file size is as allowed by the operating system.

The file size can apply to an actual file in file system based testing or the extent of linear space to
utilize on a logical or physical drive. Note that file size will be utilized per thread (that is, each
worker thread in our thread-based tools will utilize the extent specified by the file size
– 8 threads x 100m [-t8 100] would equal 800 megabytes total.) The default file size varies in
each tool.

Default:

The default file size per thread in Pain is 4MB.

The default file size for the single worker thread in Maim is 10MB.
130 Medusa Labs Test Tools Suite

Basic Switches Using the Command Line Switches

Queue Depth

-Q Queue_Depth (Maim only)

Usage:

-Qqueue_depth

Description:

Use -Q to specify the maximum number of outstanding I/Os (queue depth) when using Maim. The
maximum number of outstanding (pending) I/Os is dependent on the operating system and
memory resources. The practical limitation also depends on the target capabilities.

Example:

The following switch specifies a queue depth of 8 I/Os to be created by the worker thread.

-Q8

Default:

The default queue depth is one.
Medusa Labs Test Tools Suite 131

Using the Command Line Switches Basic Switches

Thread Count

-t Thread Count

Usage:

-tthread_count [p]

Description:

Use -t to specify number of worker threads in pain, maim, and sock. In sock, this corresponds to
the number of concurrent socket connections per sock process. In pain (synchronous I/O), since
each thread dispatches a single I/O at a time, this number roughly correlates to queue depth. In
maim (asynchronous I/O), each thread tries to maintain concurrent I/O operations specified by -Q
so the potential maximum I/O operations in-flight per target device is the product of the thread
count and the queue depth.

Figure 56: Thread Count Command (Threads per Target) Example

Figure 56 shows examples of normal thread count usage (without 'p' suffix) using 3 targets. For
each target, <thread_count> number of I/O threads is created. The total number of I/O threads
created in this case is "#targets x <thread_count>".
132 Medusa Labs Test Tools Suite

Basic Switches Using the Command Line Switches

Figure 57 shows the [p] option with the <thread_count> command. With 'p' used, <thread_count>
specifies the maximum number of total I/O threads to use per process. So rather than creating
"threads-per-target", it assigns "targets-per-thread". This option is valid only for Maim.

Figure 57: Thread Count Command (Threads Per Process) Example

Note that with the "-t4p, 3 targets" case, even though the <thread_count> is 4, it ends up creating 3
total threads because there are only 3 targets. The actual number of I/O threads created is adjusted
to be at most the number of targets in use.

With the 'p' modifier, the total number of I/O threads is at most the specified <thread_count>
value, no matter the target count.

Note: If you specify the special case "-t0p", then the program sets the <thread_count> to the
number of available CPUs. For example, if the system has 4 CPUs, then "-t0p" is same as
"-t4p". If in that same system you also specify "-T2" (i.e. use only the first 2 CPUs), then
"-t0p" is same as "-t2p".
Medusa Labs Test Tools Suite 133

Using the Command Line Switches Basic Switches

Default:

The default thread count is -t1.

Data Pattern

-l Data Pattern

Usage:

-lpattern_number

Description:

Use -l to specify the desired data pattern number. Data pattern refers to the content of the
application payload. Typically, you would want to indicate a specific data pattern for any test
involving data or signal integrity. The available data patterns are listed in the command line help
and in Appendix A, “Data Pattern Numbers.” Refer to Chapter 6, “Data Pattern Reference” for
more details on the use of this switch and other related switches.

Default:

The default data pattern varies in each tool.
134 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Switches by Category

In this section, the command-line switches are described by category. Within each category, the
switches are listed in alphabetical order. All command line switches can be divided into the
following categories:

• “General Switches” on page 137

• “-d Test Duration in Seconds” on page 137

• “-i Number of Iterations” on page 138

• “-q Control Displayed Information” on page 138

• “-S Seconds to Delay Between Thread Creation” on page 139

• “-T Set I/O Thread/CPU Affinity” on page 139

• “-Y Seconds Between Performance Samples” on page 140

• “--sample-delay Specify Sample Delay” on page 140

• “-h Online Help” on page 141

• “-A Default Session ID” on page 141

• “-U I/O Signature Timestamp Units” on page 142

• “--steady-state Determine Steady State” on page 142

• “--latency-histogram Collect Latency Histogram” on page 144

• “Stand-alone Switches” on page 145

• “-Z License Client Operation” on page 145

• “--secure-erase Erase the Target Device and Exit” on page 145

• “--trim Send Trim to Target” on page 147

• “I/O Characteristic Switches” on page 148

• “-b Buffer Size” on page 149

• “-B Sequential I/O Direction Control” on page 150

• “-c Commit or Flush Data” on page 150

• “-g Burst Mode Interval” on page 151

• “-m I/O Call Method Mode Number” on page 151

• “-Q Queue Depth (Maim only)” on page 153

• “-r Read-only Mode” on page 153

• “-ro Read-only with One Write Pass” on page 154

• “-R Read Buffering Mode” on page 154

• “-s Single Sector I/O Mode” on page 155

• “-t Thread Count” on page 156

• “-w Write-only Mode” on page 156

• “-W Write Buffering Mode” on page 157

• “-% I/O Profile Specification” on page 158

• “--scsi Direct SCSI Command for Read/Write” on page 161

• “--skip Sequential I/O Skip Size” on page 161

• “--cap Limit I/O Throughput” on page 162
Medusa Labs Test Tools Suite 135

Using the Command Line Switches Switches by Category

• “--perf-mode Performance-optimized mode” on page 162

• “Target Related Switches” on page 163

• “File Size” on page 163

• “-f Target” on page 164

• “-o Keep Target Device or File Open” on page 166

• “-O Override Device Base Offset” on page 166

• “-x Multi-Share Mode 1 - Multiple Sessions Offset” on page 167

• “-X Multi-Share Mode 2 - All Threads Issue I/Os to the Same Offsets” on page 168

• “--full-device Run to Entire Target Device” on page 168

• “--smart S.M.A.R.T Monitoring” on page 169

• “Data Pattern Related Switches” on page 170

• “-D Display the Data Pattern” on page 170

• “-e Custom Blink Pattern Modifier” on page 171

• “-E Custom Blink Pattern Modifier (for walking bit variations)” on page 171

• “-F Custom Blink Pattern Modifier” on page 172

• “-I Invert Pattern Mode” on page 172

• “-l Specify a Data Pattern Number” on page 172

• “-j Data Scrambling Mode” on page 173

• “-J Data Scrambling Mode Reset Interval” on page 173

• “-L Number of Times to Repeat the Data Pattern Cycle” on page 174

• “-N Disable Data Pattern Reversals” on page 174

• “-P Modify Data Patterns with a Phase Shift” on page 175

• “-y Create Data Patterns Based on Various Lengths” on page 175

• “Data Integrity Related Switches” on page 176

• “-C Comparison Mode” on page 176

• “-n Disable Data Corruption Checking” on page 177

• “-u Disable Unique I/O Marks” on page 177

• “-V Reverify Existing Data to a Specified Data Pattern” on page 178

• “Error Related Switches” on page 179

• “-H Time to Wait Before Retrying an I/O Operation” on page 179

• “-M I/O Monitoring Mode” on page 179

• “-v Verify/Retry Count” on page 180

• “-! (or -#) Enable Analyzer trigger writes” on page 180

• “--handler Specify Custom Error Handling” on page 181

Note: Not all switches are available in each tool. Use the online help for a complete listing of
switches applicable to each individual tool.
136 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

General Switches

The switches described in this section are the general switch commands.

• “-d Test Duration in Seconds” on page 137

• “-i Number of Iterations” on page 138

• “-q Control Displayed Information” on page 138

• “-S Seconds to Delay Between Thread Creation” on page 139

• “-T Set I/O Thread/CPU Affinity” on page 139

• “-Y Seconds Between Performance Samples” on page 140

• “--sample-delay Specify Sample Delay” on page 140

• “-h Online Help” on page 141

• “-A Default Session ID” on page 141

• “-U I/O Signature Timestamp Units” on page 142

• “--steady-state Determine Steady State” on page 142

• “--latency-histogram Collect Latency Histogram” on page 144

-d Test Duration in Seconds

Usage:

-dseconds

Description:

Use -d to limit the duration of a test to the specified number of seconds. If -i is also specified,
then the program terminates upon reaching the first exit condition.

Default:

The default behavior of MLTT is to run until manual intervention or a critical error is encountered.
Medusa Labs Test Tools Suite 137

Using the Command Line Switches Switches by Category

-i Number of Iterations

Usage:

-iiterations

Description:

Use -i to limit the run time of a test to the specified number of iterations before exiting. An
iteration, called a file operation (FOP), is a complete write and read of an entire file or specified
extent on a logical or physical drive. If -d is also specified, then the program terminates upon
reaching the first exit condition. For non-sequential I/O operations, -i has no effect and is
ignored.

Default:

The default behavior of MLTT is to run until manual intervention or a critical error is encountered.

-q Control Displayed Information

Usage:

-qmode_number

Description:

Use -q (Quiet Mode) to control the amount of information printed to the screen and log files.
The available mode numbers are:

0 = Standard log file generation/output (default)

1 = Outputs to log file in test performance format

2 = No outputs to log file, minimal screen outputs

3 = Disable CSV log

4 = Single line output with system name, performance, and errors

5 = Disable completion statistics in PRF file

6 = Enable logging of informational events in Windows event log

In general, it is best to leave this setting at the default in order to have the greatest possible amount
of information available in the event an error is encountered.

Default:

0 is the default, which is the standard log file generation and output.
138 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-S Seconds to Delay Between Thread Creation

Usage:

-S<thread_delay> or -S.<target_delay> or -S<thread_delay>.<target_delay>

Description:

Use -S to specify the number of <thread_delay> seconds to delay between each worker
thread’s starting I/O, or <target_delay> seconds to delay thread starting I/O to each target
device, or both use <thread_delay> and <target_delay>. You might need to use this switch
in some scenarios if the system does not tolerate the burst of initial threads.

Default:

The default behavior of MLTT is to launch all worker threads at once.

-T Set I/O Thread/CPU Affinity

Usage:

-T<number_of_CPUs>

Description:

Use -T to specify the number of CPUs to use for I/O threads. In addition to limiting the number of
CPUs used, this option causes a thread to always run on the same CPU. The number of CPUs
specified must be equal to or less than the number of CPUs on the system and equal to or less than
the total number of I/O threads.

Examples:

Given a system with 2 quad-core CPUs (8 “logical” CPUs total):

pain -t16 -T2

The example above specifies that only the first 2 logical CPUs to be used for all 16 I/O threads. In
addition, specifying -T prevents thread migration among CPUs. Therefore, in this example, the
first thread always runs on the first CPU, the second thread always runs on the second CPU, the
third thread always runs on the first CPU, and so on.

Given the same 8 CPU system:

pain -t8 -T8

In this example, all available CPUs are utilized. If -T was not specified, the operating system
might schedule each I/O thread on different CPUs at different times. Because, -T is specified, the
first thread is always scheduled on the first CPU, the second thread is always scheduled on the
second CPU, and so on.
Medusa Labs Test Tools Suite 139

Using the Command Line Switches Switches by Category

(Note that ‘-T0’ does not mean thread/CPU affinity is not set. It is reserved for a special meaning
that has not been implemented).

The user can also specify -T: with selective CPU numbers. For example: -T:1,4 or -T:1-4.

Default:

If ‘-T’ is not specified in the command line, then ‘-T’ is not set (“do not set thread/CPU affinity”).

-Y Seconds Between Performance Samples

Usage:

-Y<seconds>

Description:

Use -Y to specify the number of seconds between performance samples displayed on the screen
and printed to log files.

Example:

-Y1 logs performance samples once per second to the screen.

Default:

Performance samples are taken at 5 second intervals by default.

--sample-delay Specify Sample Delay

Usage:

--sample-delay=<seconds>

Description:

Use --sample-delay to specify the delay performance sample collection by specified number of
'seconds'.

Default:

'--sample-delay=0'
140 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-h Online Help

Usage:

-h

Description:

Use the -h switch to display online help.

Example:

-h

This example would show the online help.

-h -v

This example would show the online help for -v option.

-A Default Session ID

Usage:

-A

Description:

Use the -A switch to override the default session ID in data signatures with the specified 16-bit ID.

Default:

Not set

Note: -? can be used as an alternative to using the -h command to display the online help.
Medusa Labs Test Tools Suite 141

Using the Command Line Switches Switches by Category

-U I/O Signature Timestamp Units

Usage:

-U

Description:

Use the -U switch to set timestamps in I/O signature in seconds (-U) or in milliseconds (-Um).

Default:

Not set

--steady-state Determine Steady State

Usage:

--steady-state=[r.][.tag]<iops|mbps|lat>[:<%range_deviation,%slope_devi
ation>]

Description:

Determine steady state per target across a measurement window of 5 runs.

The options are:

r If specified, start a new measurement window. If not specified, the measurement
window continues from previous runs.

iops Track IOPS for steady state.

mbps Track MBPS for steady state.

lat Track I/O latency for steady state.

tag An arbitrary string that is not 'r', 'iops', 'mbps' or 'lat' which can be used to
uniquely identify a steady state testing case. This tag will be added to the
steady-state.csv file name.

%<range_deviation> Allowed deviation of minimum and maximum tracked values from the
average. Default, if not specified, is 20%.

%<slope_deviation> Allowed deviation of minimum and maximum points in a best linear fit
line through the tracked values. Default, if not specified, is 10%.

Examples:

pain --steady-state=r.iops:20,10 (note the ‘r’ to reset).

pain --steady-state=iops:20,10 (no reset)

pain --steady-state=mbps.MySSDTest:20,10 (Note that “MySSDTest” used as a tag.)

Note: When all targets have reached steady state without error, pain/maim exits with exit
code 100 which can be monitored using a driving script.
142 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

The following is a sample test script written as a Windows batch file:

@echo off

SetLocal EnableDelayedExpansion

pain -f\\.\physicaldrive1 --full-device -b128k -l35 -u -w -i2 -t8

echo Running initial loop.

pain -f\\.\physicaldrive1 -b4k -w –d60 --steady-state=r.iops -Y1

echo Starting steady state loop.

FOR /L %%l IN (2,1,25) DO (

pain -f\\.\physicaldrive1 -b4k -w –d60 -m17 --steady-state=iops -Y1

IF !ERRORLEVEL! EQU 100 goto DONE

)

goto EXIT

:DONE

echo Steady state reached.

:EXIT

Default:

Not set
Medusa Labs Test Tools Suite 143

Using the Command Line Switches Switches by Category

--latency-histogram Collect Latency Histogram

Usage:

--latency-histogram=<upperbound1[,upper_bound2[,...]]>

Description:

Collect latency histogram per target.

The collection bins are specified using a comma-separated list specifying the upper bound of each
bin. The list is sorted by the magnitude of the upper bound values, and the range of each bin is
constructed such that the upper bound is as specified and the lower bound is the upper bound of the
previous bin.

Upper bounds may be specified as a floating point value (e.g. "0.5" or "4.5").

The time unit suffix may be used:

If no time unit suffix is given, 'm' for "milli" is assumed as a default.

Examples:

--latency-histogram=100u,500u,1m,3,5,10

The "Bin" column lists the upper-bound of the range as you give it in the command line. The
"Upper (msec)" column is the upper bound value normalized to milliseconds. The other
columns, R%, W%, and R+W% display the percentage of Reads Write, or Read/Write operations with
measured latency that are within the bin; while CR%, CW%, and CR+W% display the cumulative value
of the percentage for Read, Write, or Read/Write operations with measured latency through each
bin. The last row, rest, is a bin that is added for operations with latency greater than the largest
specified bin. INF (for infinity) is inserted in this row as this bin cannot be normalized.

LATENCY: TARGET:1 (\\.\PhysicalDrive1)

 Bin,Upper (msec), R%, CR%, W%, CW%, R+W%, CR+W%

 100u, 0.1, 21.4, 21.4, 21.2, 21.2, 21.3, 21.3

 500u, 0.5, 74.5, 95.9, 74.5, 95.7, 74.5, 95.8

 1m, 1, 3.32, 99.2, 3.61, 99.3, 3.47, 99.2

 3, 3, 0.789, 100, 0.737, 100, 0.763, 100

 5, 5, 0, 100, 0, 100, 0, 100

 10, 10, 0, 100, 0, 100, 0, 100

 rest, +INF, 0, 100, 0, 100, 0, 100

Default:

Not set

'n' for "nano" 'u' for "micro" 'm' for "milli" 's' for "seconds"
144 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Stand-alone Switches

The switches described in this section are the stand-alone switch commands.

• “-Z License Client Operation” on page 145
• “--secure-erase Erase the Target Device and Exit” on page 145
• “--trim Send Trim to Target” on page 147

-Z License Client Operation

Usage:

-Z

Description:

This switch is used for license operations. To checkout a license, use -Z with the desired number
of days (ex. -Z3). To check-in a license, use a day value of 0 or -Z by itself (ex. -Z0 or -Z). This
switch is also used to activate a remote license. The syntax is -Z#license_file_name.lic,
where license_file_name.lic is the name and path to a remotely checked out license file.

Default:

Not set

--secure-erase Erase the Target Device and Exit

Usage:

--secure-erase[=[ata_command][,[scsi_command]][t]]

Description:

Erase the target device and exit.

By default, this option sends a SECURITY ERASE command to ATA devices, a SANITIZE
BLOCK ERASE command to SCSI devices, and a FORMAT UNIT command to NVMe devices
(through SCSI translation layer). FORMAT UNIT is the only available command for NVMe
devices. For ATA or SCSI devices, optional "ata_command" or "scsi_command" variations may
be specified as follows.

The "ata_command" may be specified immediately after '=' and can be one of the following:

1 SECURITY ERASE

2 ENHANCED SECURITY ERASE
Medusa Labs Test Tools Suite 145

Using the Command Line Switches Switches by Category

The "scsi_command" may be specified after ',' and can be one of the following:

1 SANITIZE BLOCK ERASE

2 SANITIZE CRYPTOGRAPHIC ERASE

3 SANITIZE OVERWRITE (INVERT=0, OVERWRITE COUNT=1)

4 SANITIZE OVERWRITE (INVERT=1, OVERWRITE COUNT=1)

5 SANITIZE OVERWRITE (INVERT=1, OVERWRITE COUNT=2)

6 FORMAT UNIT

If either "ata_command" or "scsi_command" is omitted, the command value defaults to '1'.
For example:

"--secure-erase" is the same as "--secure-erase=1,1"
"--secure-erase=2" is the same as "--secure-erase=2,1"
"--secure-erase=,5" is the same as "--secure-erase=1,5"

The optional 't' suffix enables a fall-back to full-device TRIM command for ATA and UNMAP for
SCSI and NVMe devices if the specified erase command fails. For example, if the SECURITY
ERASE command fails on a SATA SSD because it is in SECURITY FROZEN state, the 't'
modifier sends a TRIM command for every LBA as a fall-back erase method.

This option requires valid targets to be specified. An ATA device must be in security state "SEC1"
where the SECURITY features must be supported but not enabled or in some locked state.
(Security states are defined in the INCITS ATA/ATAPI Command Set 3 documentation - refer to
http://www.t13.org.) For example, it is not possible to perform SECURITY ERASE if the device
is in SECURITY FROZEN or SECURITY LOCKED state.

The '-M' option may be used to specify the maximum wait time. When the wait time is exceeded,
the test will attempt to exit immediately regardless of the status of the operation. If '-M' is not
specified with '--secure-erase', then '-M0' is assumed for no time limit and the test will run
until the operation completes successfully or returns an error.

Default:

Not set (i.e. normal I/O mode)
146 Medusa Labs Test Tools Suite

http://www.t13.org

Switches by Category Using the Command Line Switches

--trim Send Trim to Target

Usage:

--trim

Description:

The Trim command allows an operating system to inform a solid-state drive (SSD) which blocks
of data are no longer considered in use and can be wiped internally. Send TRIM to target device
and exit.

Pain/Maim use the following optional parameters to determine the LBA ranges for TRIM:
'-t', '-Q', '-b, '-O', '-x', '-m', '--full-device', and file size (with or without '--file-size').

The '-M' option may be used to specify the maximum wait time. When the wait time is exceeded,
the test will attempt to exit immediately regardless of the status of the operation. If '-M' is not
specified with '--trim', then '-M0' is assumed for no time limit and the test will run until the
operation completes successfully or returns an error.

Default:

Not set
Medusa Labs Test Tools Suite 147

Using the Command Line Switches Switches by Category

I/O Characteristic Switches

The switches described in this section are the I/O characteristic commands.

• “-b Buffer Size” on page 149

• “-B Sequential I/O Direction Control” on page 150

• “-c Commit or Flush Data” on page 150

• “-g Burst Mode Interval” on page 151

• “-m I/O Call Method Mode Number” on page 151

• “-Q Queue Depth (Maim only)” on page 153

• “-r Read-only Mode” on page 153

• “-ro Read-only with One Write Pass” on page 154

• “-R Read Buffering Mode” on page 154

• “-s Single Sector I/O Mode” on page 155

• “-t Thread Count” on page 156

• “-w Write-only Mode” on page 156

• “-W Write Buffering Mode” on page 157

• “-% I/O Profile Specification” on page 158

• “--scsi Direct SCSI Command for Read/Write” on page 161

• “--skip Sequential I/O Skip Size” on page 161

• “--cap Limit I/O Throughput” on page 162

• “--perf-mode Performance-optimized mode” on page 162
148 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-b Buffer Size

Usage:

-bbuffer_size[units]

Description:

Use -b to specify the buffer size for each I/O. This equates to the I/O block size, from the
application level. You can specify the buffer size in bytes or use a numeric value and unit
designator:

m = megabytes

k = kilobytes

b = bytes (default)

u = LB (logical block) units, usually 512 bytes

Examples:

-b1m = 1 megabyte (1048576 bytes.)

-b4k = 4 kilobytes (4096 bytes.)

-b8192 = 8 kilobytes

Default:

The default buffer size in MLTT is 64 kilobytes (65536 bytes).

Note: For physical drive targets, buffer size must be a multiple of device's logical block size
(usually 512 bytes.) For other types of targets (such as a regular file), the buffer size must be a
multiple of 512 bytes.
Medusa Labs Test Tools Suite 149

Using the Command Line Switches Switches by Category

-B Sequential I/O Direction Control

Usage:

-Bmode_number

Description:

Use -B to control the “direction” of I/O traffic on a target. By default, I/Os will start at the
beginning (lowest LBA) of the specified file or device offset, run to the specified file size (highest
LBA), then repeat from the beginning. This switch allows you to request “backward” I/O runs
(start at end of the file, highest LBA, or highest device offset and run to the beginning, lowest
LBA, of the file).These modes are useful for video editing simulations. The available modes are:

0 = All I/O forward

1 = Forward / Backward / Forward, etc.

2 = First I/O Forward, Rest Backward

3 = All I/O backward

Default:

By default, all I/Os only run in the forward direction or -B0.

-c Commit or Flush Data

Usage:

-c

Description:

Use -c to specify that the tool should explicitly request a commit or flush of each write command.
This switch is currently only supported when running to file system targets. This switch works
independently of the write cache options (-W).

Default:

This option is disabled by default.
150 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-g Burst Mode Interval

Usage:

-gseconds

Description:

This switch is used to set a time interval between I/O bursts in Maim. A burst equates to a dispatch
of simultaneous requests corresponding to the queue setting (-Q). The time interval may be set in
seconds or milliseconds. A numeric value by itself indicates seconds (ex. -g1 equals 1 second
between bursts.) If 'm' is added to the number, milliseconds will be indicated. For example, -g10m
equals 10 milliseconds between bursts. This switch only applies to the non-continuous queuing
Maim I/O modes.

This option is ignored in pain or in maim when running in non-burst (continuous) queuing mode.

Default:

Burst mode is disabled by default and I/O groups are sent immediately, one after another.

-m I/O Call Method Mode Number

Usage:

-mmode_number

Description:

This option controls the following I/O traits.

Asynchronous I/O queuing mode (maim only):

• Burst queuing
The requested queue-depth of I/Os (see -Q) are issued at once. The Test Tool waits for all
pending I/Os to complete before issuing the next burst of I/Os.

• Continuous queuing
The request queue-depth of I/Os are issued once initially. Rather than waiting for all I/Os to
complete, the Test Tool issues a new I/O request each time one of the pending I/Os completes.
Continuous queuing is used for maximizing the number of I/O requests per second (IOPS).

Device Access Mode:

• Sequential access
The Test Tool issues each new I/O to a device offset that is sequentially adjacent to the
previous I/O request.

• Random access
The Test Tool issues each new I/O to a randomly chosen device offset.
Medusa Labs Test Tools Suite 151

Using the Command Line Switches Switches by Category

Device Coverage Mode:

• Partial Coverage
The Test Tool covers the area specified by file size.

• Full coverage
The Test Tool covers the entire target device.

Memory Stream Copy:

By bypassing the actual I/O to a target device or file, the Test Tool effectively runs in
memory-to-memory copy mode. This is a good way to test the system bus performance at different
levels (i.e. L1 cache, L2/L3 caches, RAM). NOTE: MLTT cannot bypass the host operating
system’s virtual memory sub-system.

The mode_number may be one of the following:

1 General I/O mode

• Pain – synchronous I/O, sequential access

• Maim – asynchronous I/O, continuous queuing, strict sequential access

9 Memory stream copy (no I/O to device)

11 General burst queuing asynchronous I/O mode

• Pain – not applicable (reverts to -m1)

• Maim – asynchronous I/O, burst queuing, sequential access

16 Continuous queuing asynchronous I/O mode

• Pain – not applicable (reverts to -m1)

• Maim – asynchronous, continuous queuing, sequential access

17 Random access, full device coverage mode

• Pain – synchronous I/O, random access, full device coverage

• Maim – asynchronous I/O, continuous queuing, random access, full device
coverage

18 Sequential access, full device coverage mode

• Pain – synchronous I/O, sequential access, full device coverage

• Maim – asynchronous I/O, burst queuing, sequential access, full device coverage

30 TCP/IP network I/O mode

Default:

The default mode is 1 for pain, 11 for maim, and 30 for sock.
152 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-Q Queue Depth (Maim only)

Usage:

-Qqueue_depth

Description:

Use -Q to specify the maximum number of outstanding I/Os (queue depth) per worker thread in
Maim, our asynchronous tool. The maximum number of outstanding (pending) I/Os is dependent
on the operating system and memory resources. The practical limitation will also depend on the
target capabilities.

This switch is ignored in Pain.

Default:

The default queue depth is one.

-r Read-only Mode

Usage:

-r

Description:

Use -r to indicate a read-only mode.

After the write pass, the tools issue repeated read-backs of the data with data integrity checking
enabled by default. If no initial write pass is desired, such as in performance tests where data is not
relevant, you can combine the -r switch with the -n and -o switches for a pure read-only mode.
This combination will result in the reads returning whatever data exists in the file or device area.
You must specify an existing file, logical device, or physical device with a minimum size equal to
or greater than the specified file size in order to perform reads only.

Example:

pain -f\\.\physicaldrive2 -r -n -o

Default:

By default, the tools perform both write and read operations, with data comparison.

Important: By default, the tools will still do a single write FOP in order to lay down the
specified data pattern.
Medusa Labs Test Tools Suite 153

Using the Command Line Switches Switches by Category

-ro Read-only with One Write Pass

Usage:

-ro

Description:

This switch is a macro that is the same as specifying the -n -r -o switches, except that one
write pass is performed. This is useful for cases where you do not want data comparisons, but you
need a particular data pattern for read-only traffic. You might want to use this macro in signal
integrity testing, with an in-line analyzer set to trigger on error conditions. The device or file is
held open for the duration of the test to increase performance.

Default:

By default, the tools perform both write and read operations, with data comparison.

-R Read Buffering Mode

Usage:

-R<0|1|2|3|4>

Description:

The -R switch is used to set the file open/creation flags that can affect read buffering. The available
read buffering modes are:

Windows 0 = Do not explicitly set file open flags

 1 = Cache allowed, no O/S buffering

 2 = Cache allowed, O/S buffered

 3 = Non-cached, no O/S buffering

 4 = Non-cached, O/S buffered

Linux 0 = Do not explicitly set file open flags

 1 = O_DIRECT on, O_SYNC on

 2 = O_DIRECT on, O_SYNC off

 3 = O_DIRECT off, O_SYNC on

 4 = O_DIRECT off, O_SYNC off
154 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Default:

The default is 1, Cache allowed, No O/S buffering or -R1.

-s Single Sector I/O Mode

Usage:

-ssectors

Description:

Use -s to set the tool to a sector-based I/O mode. Basically, this switch acts as a macro to optimize
for intense reading to a small area on a disk. Read I/O is contained to the number of sectors
specified. The following flags are set automatically: -q1 -r -o -n -R3, except on
non-Windows platforms, the -R3 flag is not set automatically. When you use this switch, you
must specify the file/device by using the -f switch. This switch is not available in all tools. Refer
to the command line help.

Default:

This option is disabled by default.

Solaris 0 = Do not explicitly set file open flags

 1 = O_SYNC on

 2 = O_SYNC off

 3 = O_SYNC on

 4 = O_SYNC off
Medusa Labs Test Tools Suite 155

Using the Command Line Switches Switches by Category

-t Thread Count

Usage:

-tthread_count [p]

Description:

Use -t to specify number of worker threads in pain, maim, and sock. In sock, this corresponds to
the number of concurrent socket connections per sock process. In pain (synchronous I/O), since
each thread dispatches a single I/O at a time, this number roughly correlates to queue depth. In
maim (asynchronous I/O), each thread ties to maintain concurrent I/O operations specified by -Q.
Therefore, in maim, the potential maximum I/O operations in-flight per target device is the
product of the thread count and the queue depth (Thread Count X Queue Depth). For examples,
refer to Figure 56 on page 132.

Figure 57 on page 133 shows the [p] option with the <thread_count> command. With 'p' used,
<thread_count> specifies the maximum number of total I/O threads to use per process. So rather
than creating "threads-per-target", it assigns "targets-per-thread". This option is valid only for
Maim.

With the 'p' modifier, the total number of I/O threads is at most the specified <thread_count>
value, no matter the target count.

Example:

The following switch specifies that 8 separate I/O generating threads will be created from the
central application.

-t8

Default:

The default thread count is one.

-w Write-only Mode

Usage:

-w

Description:

The -w switch is used to indicate a write-only mode. No reads are performed. This option is
ignored if -%r or -%w is specified.

Note: If you specify the special case "-t0p", then the program sets the <thread_count> to the
number of available CPUs. For example, if the system has 4 CPUs, then "-t0p" is same as
"-t4p". If in that same system you also specify "-T2" (i.e. use only the first 2 CPUs), then
"-t0p" is same as "-t2p".
156 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Default:

By default, the tools perform both write and read operations, with data comparison.

-W Write Buffering Mode

Usage:

-W<0|1|2|3|4>

Description:

Use the -W switch to set file open/creation flags that can affect write buffering. The available write
buffering modes are:

Default:

The default is 1, Cache Allowed, No O/S Buffering or -W1.

Windows 0 = Do not explicitly set file open flags

1 = Cache Allowed, no O/S buffering

2 = Cache Allowed, O/S buffered

3 = Non-cached, No O/S buffering

4 = Non-cached, O/S buffered

Linux 0 = Do not explicitly set file open flags

1 = O_DIRECT on, O_SYNC on

2 = O_DIRECT on, O_SYNC off

3 = O_DIRECT off, O_SYNC on

4 = O_DIRECT off, O_SYNC off

Solaris 0 = Do not explicitly set file open flags

1 = O_SYNC on

2 = O_SYNC off

3 = O_SYNC on

4 = O_SYNC off
Medusa Labs Test Tools Suite 157

Using the Command Line Switches Switches by Category

-% I/O Profile Specification

Usage:

-%r<weight>[@buffer_size] for read percentage

-%w<weight>[@buffer_size] for write percentage

-%f<weight> for sequential access forward percentage

-%b<weight> for sequential access backward percentage

-%x<weight> for random access percentage

-%s<random_seed> 32-bit seed for I/O profile random number generation

-%o<size> Random offset alignment size - insures that random I/Os are issued on boundaries of
the indicated size.

-%t<spec[,spec[,spec[,...]]]> Set the I/O read/write and access mix profile with one or
more of the following 'spec' keys.

Description:

The -% option can be used to specify a mix of operations and I/O access positioning. This is useful
in generating I/O modeling real world applications.

Use -%r and -%w to specify what percentage of I/O operations should be reads or writes. For
example, -%r10 -%w90 states “10% read operations, 90% write operations.” The <weight>
value is required for each -%r and -%w specification. The [@buffer_size] modifier is
optional and can be used to specify the buffer size used for a -%r or -%w specification. Without
the optional [@buffer_size] modifier, either the global buffer size specified by the -b option
(if specified) or the default buffer size of 64KBs is used. The -%r and -%w specifications are
accumulative and can be used multiple times in the command line. The final percentages are
determined from the sum of all <weight> values for all -%r and -%w options given in the
command line.

Use -%f, -%b, and -%x to specify the probability of I/O direction. -%f determines the
probability of next I/O position to be sequentially forward adjacent from the previous I/O position.
-%b determines the probability of next I/O position to be sequentially backward adjacent from the
previous I/O position. -%x determines the probability of next I/O occurring at any random
position within the target coverage area. The <weight> value is required for each -%f, -%b, and
-%x specification. Only one instance of each of -%f, -%b, and -%x specifications is valid in the
command line. The final I/O access position percentages are determined from the sum of all
<weight> values for all -%f, -%b, and -%x options given in the command line.

Use -%s to specify a 32-bit number used as the seed for I/O profile random number generation. If
-%s given more than once in the command line, the last instance takes effect.
158 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Transaction mode:

- T[N]

Enable transaction simulation mode, with optional value 'N' denoting the number of transactions
per connection. If 'N' is not given, the number of transactions per connection is unlimited. If 'N' is
specified as a 'MIN-MAX' range, a new random value between 'MIN' and 'MAX' is used for each
new connection.

Read/write operation mix:

 - r<weight>[@<size>]

 Read operation probability 'weight' with optional buffer 'size'.

 'Size' can be specified as 'MIN-MAX' range for random values. In transaction mode ('-%T'
enabled), this specifies the transaction request size.

 - w<weight>[@<size>]

 Write operation probability 'weight' with optional buffer 'size'.

 'Size' can be specified as 'MIN-MAX' range of random values. In transaction mode ('-%T'
enabled), this specifies the transaction response size.

Forward/backward/random access mix:

 - f<weight>

 Forward sequential access probability 'weight'

 - b<weight>

 Backward sequential access probability 'weight'

 - x<weight>

 Random access probability 'weight'

 - o<size>

 Random offset alignment 'size'

Random seed:

 - s<seed>

 32-bit seed for random number generators used for read/write mix and I/O access sequences

Default:

Unset
Medusa Labs Test Tools Suite 159

Using the Command Line Switches Switches by Category

Examples:

-b8k -%r10 -%r10@4k -%w20 -%w15@512b -%w45@1k

In this example, since the sum of all weight values is 100, each weight value corresponds to the
exact percentage. Looking at each option:

In the next example, the sum of all weight values is not 100; therefore, the percentages are
calculated relative to the actual sum.

The following example demonstrates how to specify the I/O access position mix:

In the following example, because the sum of the weight values is not 100, the percentages are
determined relative to the actual sum:

In the following TCP/IP application transaction mode example, all requests are between 30 to 500
bytes in size, while 20% of responses are 4KBs, another 20% are 8KBs, and the remaining 60% or
responses are 100KBs in size. The transactions-per-connection (or an application session) is
between 20 to 30 transactions, after which each I/O thread terminates the connection and
establishes a new one before continuing.

sock -%T20-30 -%r100@30b-500b,w20@4k,w20@8k,w60@100k

-b8k specifies the default buffer size of 8KBs

-%r10 specifies “10% reads using the default 8KB buffer size”

-%r10@4k specifies “10% reads using 4KB buffer size”

-%w20 specifies “20% writes using the default 8KB buffer size”

-%w15@512b specifies “15% writes using 512-byte buffer size”

-%w45@1k specifies “45% writes using 1KB buffer size”

-r10 -w30 using the final sum of 40, this specifies “25% reads, 75% writes”

-%f30 -%b70 specifies “30% forward sequential, 70% backward sequential.”

-%f50 -%b70 -%f30 also specifies “30% forward sequential, 70% backward sequential.”
Because only one each of -%f, -%b, and -%x takes effect, the last
-%f30 overrides the first -%f50.

-%f40 -%b100 -%x60 using the final sum of 200, this specifies “20% forward sequential, 50%
backward sequential, 30% random access.”
160 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

--scsi Direct SCSI Command for Read/Write

Usage:

--scsi[=0|1|2|3|4]

Description:

Use direct SCSI commands for read/write. This option is ignored if not running synchronous I/O
to physical drive targets. The available mode numbers are:

0 = Off (default)

1 = On (READ10/WRITE10)

2 = On (READ10/WRITE10), with Forced Unit Access (FUA)

3 = On (READ16/WRITE16)

4 = On (READ16/WRITE16), with FUA

If '--scsi' is specified without using '0', '1', '2', '3', or '4', then '--scsi=1' is assumed.

Default:

--scsi=0

--skip Sequential I/O Skip Size

Usage:

--skip=<size>

Description:

In sequential I/O modes, use the --skip option to skip a specified amount of “<size>” between
adjacent I/Os. This may be useful in cases when the operating system coalesces adjacent I/Os
which can skew the observed IOPS count. The “<size>” parameter specification is the same as for
buffer size (“-b<size>”).

Example:

Perform sequential I/O from LBA 0x100000 to LBA 0x900000 (i.e. file size of '0x900000 -
0x100000' or '0x800000' LBA units), 7 LBA units at a time, skipping 1 LBA unit between
each I/O:

pain -x0x100000u -b7u 0x800000u --skip=1u

Default:

'--skip=0'
Medusa Labs Test Tools Suite 161

Using the Command Line Switches Switches by Category

--cap Limit I/O Throughput

Usage:

--cap=[p|P|t|T][.]<limit>

Description:

Try to limit the I/O throughput to 'limit' bytes-per-second. The optional 'p' or 'P' prefix specifies the
scope of the limit to be the process. The optional 't' or 'T' prefix specifies the scope of the limit to
be per-target. Without the scope prefix, the limit is per-thread. Use the optional '.' separator to
specify 'bits-per-second' rather than the default 'bytes-per-second'. An optional size unit suffix may
be used (e.g. just as for file size and buffer size parameters.) If no unit suffix is given, the default
unit of 'm' is assumed for 'megabytes-per-second' or, if '.' is specified, 'megabits-per-second'.

This option does not cap the actual device speed. It only tries to limit the I/O submission rate in
order to sustain the specified limit over time.

Examples:

Cap the process throughput to 50 megabytes-per-second: pain --cap=p50

Cap the per-target throughput to 50 megabytes-per-second: pain --cap=t50

Cap the per-thread throughput to 50 megabytes-per-second: pain --cap=50

Cap the per-target throughput to 1 gigabits-per-second: sock --cap=t.1g

Cap the per-thread throughput to 1 gigabits-per-second: sock --cap=.1g

Default:

The default limit is '0' (no cap).

--perf-mode Performance-optimized mode

Usage:

--perf-mode

Description:

Use this option to run in performance-only testing mode to achieve the best I/O throughput. In this
mode, the buffer usage is performance-optimized, and data integrity testing is not possible. This
option automatically enables '-n', '-N', '-u', and '-o' options.
162 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Target Related Switches

The switches described in this section are the target related commands.

• “File Size” on page 163

• “-f Target” on page 164

• “-o Keep Target Device or File Open” on page 166

• “-O Override Device Base Offset” on page 166

• “-x Multi-Share Mode 1 - Multiple Sessions Offset” on page 167

• “-X Multi-Share Mode 2 - All Threads Issue I/Os to the Same Offsets” on page 168

• “--full-device Run to Entire Target Device” on page 168

• “--smart S.M.A.R.T Monitoring” on page 169

File Size

Usage:

file_size

Description:

The desired “file” size is specified as a number, with no preceding switch argument. You can
specify the size in bytes or use a numeric value and unit designator:

g = gigabytes

m = megabytes (default)

k = kilobytes

u = LB (logical block) size units, usually 512 bytes

Examples:

1g

100m

512k

The file size must be at least the same as the I/O size, or a multiple of the I/O size.

Maximum file size is as allowed by the operating system.

The file size can apply to an actual file in file system based testing or the extent of linear space to
utilize on a logical or physical drive. Note that file size will be utilized per thread (that is, each
worker thread in our thread-based tools will utilize the extent specified by the file size
– 8 threads x 100m [-t8 100] would equal 800 megabytes total.) The default file size varies in
each tool.

Default:

The default file size per thread in Pain is 4MB.

The default file size for the single worker thread in Maim is 10MB.
Medusa Labs Test Tools Suite 163

Using the Command Line Switches Switches by Category

-f Target

Usage:

-ftarget

Description:

Use -f to specify the desired target. The target can be a file, logical drive, or physical drive that
resides in the host system or is externally attached via SCSI, USB, FireWire, LAN, SAN, and
others.

Also, when using sock, the target may specify the hostname or an IP (or IPv6) address of a peer for
TCP/IP network I/O.

Default:

If no target is specified, each worker thread creates a file in the current directory.

Examples:

Physical: -f\\.\physicaldrive1

Logical: -f\\.\g:

File: -fg:\file1.dat

Linux device: -f/dev/sdc

Solaris device: -f/dev/rdsk/c1t1d0s2

TCP/IP peer (sock): -fhostname or -f10.23.1.101 or -f10.23.1.80:10.23.1.101
(where 10.23.1.80 is a specific local IP if there is more than one network interface to choose
from). When specifying an IPv6 address pair, use ‘-’ to separate the local and remote addresses
(e.g. -ffe80::c62c:3ff:fe08:a66c%en0-fe80::221:9bff:fe50:90ec). For a link-local
IPv6 address pair, the scope ID of the outgoing interface must be appended to the local address
(e.g. “%en0” or “%5”).

The tools also support a multi-target mode, where multiple targets can be accessed in a single
process. The Catapult -t switch option performs this automatically. See “-t Multi-target mode” on
page 226. Multiple targets may also be specified manually in one of several manners:

• Create a text file called “targets.dat” that contains desired targets, one per line. Catapult can
create this file for you. For example:

catapult -p -t

Then pass this file name, with path if necessary, to pain or maim with the -f switch.

pain -ftargets.dat

• You can also specify multiple targets on the command line, separated by commas. For
example:

pain -f\\.\physicaldrive1,\\.\physicaldrive2

Note: If the switch is not specified, one file of the specified size is created in the current
directory by each worker thread.
164 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

• You can also use a prefix system, where a common prefix is terminated with a semi-colon,
followed by suffixes that are comma separated. For example:

pain -f\\.\physicaldrive;1,2,3

• Generate TCP/IP I/O to 10.23.1.101 and 10.23.1.102 from 10.23.1.80.

sock -f”10.23.1.80:10.23.1.;101,102”

NOTE: on Unix systems, the shell interprets ';' as the command separation character; therefore, the
target name should be quoted. For example, the shell interprets the following:

pain -f/dev/sd;b,c,d

as a sequence of two commands as shown below:

pain -f/dev/sd

b,c,d

To prevent such errors, the target specification must be quoted.

pain -f"/dev/sd;b,c,d"

Warning: Physical and logical drive access is destructive! Existing data WILL be
overwritten.
Medusa Labs Test Tools Suite 165

Using the Command Line Switches Switches by Category

-o Keep Target Device or File Open

Usage:

-o

Description:

Use -o to disable repeated opening and closing of the file or device. This switch causes the file or
device to be opened once and kept open for the duration of the test. Keeping a file or device open
increases performance.

The -o option is implied for continuous queuing maim modes or if random access is specified (for
example, through a combination of -%f, -%b, -%x).

Default:

By default, the tools open and close the file or device with each FOP.

-O Override Device Base Offset

Usage:

-O[mode]

Description:

Use -O to override the MLTT default device base offset setting. By default, I/O starts at a 1MB
offset on the specified device. This switch instructs the tools to start I/Os at the start of the device
(that is, sector 0 on a hard drive). You should always use this switch when running I/O to an
existing file on a file system partition to avoid unnecessary seeking. For example:

-fg:\test.dat -O

Default:

By default, I/O starts at a 1MB offset on the specified device.

Caution: Use this switch with extreme caution on physical drives or logical partitions!
Overwriting a drive from sector 0 will erase OS-specific details, such as the drive signature.
166 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-x Multi-Share Mode 1 - Multiple Sessions Offset

Usage:

-xoffset

Description:

Use -x to enable Multi-Share Mode 1. This mode allows multiple host systems or multiple
sessions of the tools on a single system to access the same device or file concurrently. You can
optionally specify the starting offset number in megabytes. A number supplied with this switch
will be used to set the base (starting) offset for the file/device in megabytes.

To avoid collisions with other sessions of the tools, you must set the base offset for each new
session beyond the highest offsets of previous sessions. Offset maybe specified with an optional
unit: 'b' for bytes, 'k' for kilobytes, 'm' for megabytes, 'g' for gigabytes. The offset value must be a
multiple of the logical block size of the target device.

Example:

machine a: pain -t10 10 -x1 (runs 10 threads at 10MB each starting at 1MB offset)

machine b: pain -t10 10 -x101 (runs 10 threads at 10MB each starting at 101MB offset)

In this example, the base offset for machine b is set to the lowest possible value that will not
conflict with machine a. (i.e. 10 threads multiplied by a per-thread file size of 10 equals 100MB of
space used by machine a. Machine b has to start at a minimum offset of 101MB to avoid
overwriting machine a.)

Default:

The default offset, if -x is specified without the optional offset value, is 0MB if -O, -O1, -O2, or
-O3 is specified; otherwise, the default offset is 1MB.
Medusa Labs Test Tools Suite 167

Using the Command Line Switches Switches by Category

-X Multi-Share Mode 2 - All Threads Issue I/Os to the Same Offsets

Usage:

-Xoffset

Description:

Use the -X switch to enable Multi-Share Mode 2. In this mode, all threads issue I/Os to the same
offsets. The offset maybe specified with an optional unit: 'b' for bytes, 'k' for kilobytes, 'm' for
megabytes, 'g' for gigabytes. The offset value must be a multiple of the logical block size of the
target device. A number supplied with this switch will be used to set the starting offset to use for
the file/device in megabytes. This mode automatically disables data pattern reversals and unique I/
O marks to prevent false data corruptions.

Default:

The default offset, if -x is specified without the optional offset value, is 0MB if -O, -O1, -O2, or
-O3 is specified; otherwise, the default offset is 1MB.

--full-device Run to Entire Target Device

Usage:

--full-device

Description:

This is a convenience option to specify full-device coverage if the target is a physical device or a
volume. The testing area size is determined by the device size, starting offset, and the thread count
- i.e. Per-thread testing area is (device size - starting offset) / thread count.

The transfer size of the very last I/O to the end of the device may be smaller than the buffer size
specified by “-b”.

Default:

Enabled for -m17 and -m18, disabled for all other -m modes.
168 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

--smart S.M.A.R.T Monitoring

Usage:

--smart -f<targets> [other options]

Retrieves Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T. - also written as
SMART) attributes and status from target devices and logs them.

At the end of the test, the overall SMART status is output to screen for each target. For example:

SMART: Target 1: '\\.\physicaldrive1' - OK

In addition, the .log file contains the retrieved SMART attributes and data in CSV format. The
following is the output of an example .log file using the SMART command:

SMART: Target 1: '\\.\physicaldrive1' - OK
 ATTR (HEX), VALUE, FLAG BITS (HEX), VENDOR SPECIFIC DATA, DESC (from Wikipedia)
 5 (05), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Reallocated Sectors Count
 9 (09), 100, 0000000000110010 (0032), 64 C3 25 00 00 00 00 00, Power-On Hours (POH)
 12 (0C), 100, 0000000000110010 (0032), 64 D3 02 00 00 00 00 00, Power Cycle Count
 170 (AA), 100, 0000000000110011 (0033), 64 00 00 00 00 00 00 00, Available Reserved Space
 171 (AB), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, SSD Program Fail Count
 172 (AC), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, SSD Erase Fail Count
 174 (AE), 100, 0000000000110010 (0032), 64 C7 02 00 00 00 00 00, Unexpected power loss count
 175 (AF), 100, 0000000000110011 (0033), 64 F7 02 B6 0E 2C 00 00, Power Loss Protection Failure
 183 (B7), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, SATA Downshift Error Count or Runtime Bad Block
 184 (B8), 100, 0000000000110011 (0033), 64 00 00 00 00 00 00 00, End-to-End error / IOEDC
 187 (BB), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Reported Uncorrectable Errors
 190 (BE), 75, 0000000000100010 (0022), 40 19 00 15 2C 00 00 00, Airflow Temperature
 192 (C0), 100, 0000000000110010 (0032), 64 C7 02 00 00 00 00 00, Power-off Retract Count
 194 (C2), 100, 0000000000100010 (0022), 64 19 00 00 00 00 00 00, Temperature resp
 197 (C5), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Current Pending Sector Count
 199 (C7), 100, 0000000000111110 (003E), 64 00 00 00 00 00 00 00, UltraDMA CRC Error Count
 225 (E1), 100, 0000000000110010 (0032), 64 CD 21 8C 00 00 00 00, Load/Unload Cycle Count
 226 (E2), 100, 0000000000110010 (0032), 64 FF FF 00 00 00 00 00, Load 'In'-time
 227 (E3), 100, 0000000000110010 (0032), 64 FF FF FF FF 00 00 00, Torque Amplification Count
 228 (E4), 100, 0000000000110010 (0032), 64 FF FF 00 00 00 00 00, Power-Off Retract Cycle
 232 (E8), 100, 0000000000110011 (0033), 64 00 00 00 00 00 00 00, Available Reserved Space
 233 (E9), 97, 0000000000110010 (0032), 61 00 00 00 00 00 00 00, Media Wearout Indicator
 234 (EA), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Average erase count AND Maximum Erase Count
 241 (F1), 100, 0000000000110010 (0032), 64 CD 21 8C 00 00 00 00, Total LBAs Written
 242 (F2), 100, 0000000000110010 (0032), 64 13 0B AE 00 00 00 00, Total LBAs Read

The five column headings in the CSV file are:

ATTR (HEX) − is the SMART attribute ID (the hexadecimal equivalent in shown in parentheses).

VALUE − is the current raw decimal value of the attribute. Whether or not the condition represented
by the attribute ID is in good or bad shape depends on whether or not this value is within the
vendor-specific threshold value. There is no standard way to retrieve the threshold value itself as
MLTT does not have access to the threshold value.

FLAG BITS (HEX) − is the 16-bit flags for the attribute retrieved from the drive (the hexadecimal
equivalent in shown in parentheses).

VENDOR SPECIFC DATA − is the 8-bytes of vendor-specific data for the attribute retrieved from
the drive and displayed in hexadecimal.

DESC (from Wikipedia) − These descriptions are not defined by the standard, and many
attribute IDs are vendor-specific.
Medusa Labs Test Tools Suite 169

Using the Command Line Switches Switches by Category

Data Pattern Related Switches

This switch category contains switches that you use when you specify patterns for your test.

• “-D Display the Data Pattern” on page 170

• “-e Custom Blink Pattern Modifier” on page 171

• “-E Custom Blink Pattern Modifier (for walking bit variations)” on page 171

• “-F Custom Blink Pattern Modifier” on page 172

• “-I Invert Pattern Mode” on page 172

• “-l Specify a Data Pattern Number” on page 172

• “-j Data Scrambling Mode” on page 173

• “-J Data Scrambling Mode Reset Interval” on page 173

• “-L Number of Times to Repeat the Data Pattern Cycle” on page 174

• “-N Disable Data Pattern Reversals” on page 174

• “-P Modify Data Patterns with a Phase Shift” on page 175

• “-y Create Data Patterns Based on Various Lengths” on page 175

For more information about data patterns refer to Chapter 6, “Data Pattern Reference.”

-D Display the Data Pattern

Usage:

-Dbytes

Description:

Use -D for a visual representation of the selected data pattern on the console. Specifying this
switch alone or with a numeric byte value causes the data pattern to run on the console in binary
format. No I/Os are sent to any other device. The byte value is used to indicate the number of bytes
wide that the pattern should take up on the console. Note that because the data pattern
representation is in binary, each byte indicated will take up 8 character places on a console line.
This switch is extremely useful for understanding the signal transitions induced by a particular
data pattern. In addition to real time data pattern display, this switch can be used for a quick data
pattern preview.

If an asterisk (-D*) is used instead of a numeric byte value, a brief excerpt of the selected data
pattern will be displayed on screen in hex format, with no I/O to any devices. Note that this feature
is not yet available in all tools. This feature is useful for validating that the data pattern
characteristics specified on the tool command line are as expected. If -D*b is specified, the pattern
preview is displayed in binary format instead of the default hex format. For -D* and -D*b, use -b
(buffer size) option to specify the number of bytes to preview.

Default:

Using -D without a specified byte value will run the data pattern at a length of 8 bytes per line
displayed on the console (the line across the console screen—before carriage return to the next
line).
170 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-e Custom Blink Pattern Modifier

Usage:

-ebit_length

Description:

The -e switch is a modification option for the custom blink pattern variations (-l99). The
desired length of blinking (on) bits is specified with the bit length option. This switch can be used
in conjunction with the -L switch to create some interesting patterns across various bus lengths.
There is no default value and a bit length value must be specified. Refer to “-e Custom Blink
Pattern Modifier” on page 199 for a detailed usage example.

Default:

There is no default value.

-E Custom Blink Pattern Modifier (for walking bit variations)

Usage:

-Ehold_cycles

Description:

The -E switch is a modification option for the custom blink pattern with walking bit options
(-l99w, -l99o, -l99f). Hold cycles indicates the number of times that a pattern is repeated
before the bit is walked. This switch can be useful in testing for stuck bit faults on bus
architectures. There is no default value; you must specify a hold cycle value. Refer to “-E Custom
Blink Pattern Modifier (for walking bit variations)” on page 200 for a detailed usage example.

Default:

There is no default value.
Medusa Labs Test Tools Suite 171

Using the Command Line Switches Switches by Category

-F Custom Blink Pattern Modifier

Usage:

-F

Description:

The -F switch is a modification option for the custom blink pattern variations (-l99). This
switch causes a “flip/flop” transition in the pattern by returning to the initial pattern value in each
cycle. This switch is useful in testing for stuck bits. Refer to “-F Custom Blink Pattern Modifier”
on page 201 for a detailed usage example.

Default:

This option is disabled by default.

-I Invert Pattern Mode

Usage:

-I

Description:

The -I switch is a modification option for certain data patterns. This switch causes a bit inversion
of the data pattern with each transition cycle. Refer to the MLTT command-line help for a listing
of data patterns that support this option. This switch is used to create some interesting bit-blink
variations over bus architectures. Refer to “-I Invert Pattern Mode” on page 196 for a detailed
usage example of this switch.

Default:

This option is disabled by default.

-l Specify a Data Pattern Number

Usage:

-lpattern_number

Description:

Use -l to specify the desired data pattern number. Most likely, you would want to indicate a
specific data pattern for any test involving data or signal integrity. Refer to Chapter 6, “Data
Pattern Reference” for more details about using this switch and other related switches.
172 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Default:

The default pattern varies in MLTT.

-j Data Scrambling Mode

Usage:

-jnumber

Description:

Use -j to enable pre-scrambling of data patterns. Specify the desired scrambling mode. If -j is not
specified, it is assumed that there is no prescrambling or -j0.

0 = No prescrambling

1 = SAS scrambler (reset scrambler every 1024 bytes of data)

2 = SATA scrambler (reset scrambler every 8192 bytes of data)

Use with the -J switch to override the default reset interval.

Default:

This option is disabled by default.

-J Data Scrambling Mode Reset Interval

Usage:

-Jbytes

Description:

Use -J with the -j switch to specify the scrambler reset interval in bytes. For SAS/SATA
scrambling, this number should correlate to the data payload size. Use this switch only when you
want to override the default scrambler reset values used by the -j switch.

Example:

Specifying pain -j2 -J2048 would run the SATA scramble method, overriding the default
data length of 8192 with 2048.
Medusa Labs Test Tools Suite 173

Using the Command Line Switches Switches by Category

-L Number of Times to Repeat the Data Pattern Cycle

Usage:

-Lcycle_length

Description:

Use -L to modify the length or repetition of the selected data pattern cycle. The cycle length
indicates the number of times to repeat each cycle of a data pattern before moving to the next unit.
In general, the unit of data pattern refers to its length in bytes or bits. Refer to the command-line
help for a listing of data patterns that currently support this option.

Example:

Specifying -L4 as a modifier causes an 8-bit pattern to run each unit (one byte) four times before
moving to the next unit, effectively creating a 32-bit pattern. Specifying -L2 causes a 64-bit
pattern to run each unit (eight bytes) two times, effectively creating a 128-bit pattern. Refer to
“-L Number of Times to Repeat the Data Pattern Cycle” on page 195 for a detailed usage
example.

Default:

The default value is one (no effect on the data pattern.)

-N Disable Data Pattern Reversals

Usage:

-N

Description:

Use -N to disable data pattern reversals on those patterns that support reversals. By default, most
data patterns reverse after each FOP (forward, then backward). In general, reversals should be
allowed anytime data comparisons are being performed as a means of insuring that stale data is not
being read. See “Continuously Changing I/O Stream” on page 192 for more information about
data pattern reversals.

Default:

By default, most data patterns reverse after each FOP (forward, then backward).
174 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-P Modify Data Patterns with a Phase Shift

Usage:

-Pcycle_length

Description:

Use -P to modify supported data patterns with a “phase shift.” This switch works on most
blinking data patterns. Refer to the command-line help for a listing of data patterns that currently
support this option. The effect is one of shifting the data pattern “out of phase” at the specified
cycle length, such that the square wave, created by the on/off bits in the blinking byte values,
reverses. You can specify the frequency of this shift as the cycle length or a default value will be
used if you only specify -P. A specified cycle length is multiplied with pattern length to determine
the frequency of the shift.

Example:

-P32 would cause a 64-bit pattern to run for 256 bytes before shifting. (64-bits equals 8 bytes. 8
times 32 equals 256 bytes.) Refer to “-P Modify Data Patterns with a Phase Shift” on page 197
for an in-depth discussion on the use of this switch and a detailed usage example.

Default:

The default length varies by pattern and is equivalent to the full cycle length of the pattern.

-y Create Data Patterns Based on Various Lengths

Usage:

-ypattern_value

Description:

Use -y to specify a value to repeat in the write buffers and create the data pattern. Use this switch
with several data pattern numbers (-l) to create patterns based on various lengths. Refer to
Appendix A, “Data Pattern Numbers,” or the MLTT command-line help for a listing of data
patterns that support this option. Refer to “-y Create Data Patterns Based on Various Lengths” on
page 202 for more information on this switch. For data patterns involving random number
generation, this option may be used to specify a 32-bit random number seed value.

Default:

A default value is assigned that is equivalent to the thread index number.
Medusa Labs Test Tools Suite 175

Using the Command Line Switches Switches by Category

Data Integrity Related Switches

The switches described in this section are the target related commands.

• “-C Comparison Mode” on page 176

• “-n Disable Data Corruption Checking” on page 177

• “-u Disable Unique I/O Marks” on page 177

• “-V Reverify Existing Data to a Specified Data Pattern” on page 178

This category of switches is used to change the options related to data integrity checking. By
default, the tools implement several measures to ensure that data read compares exactly with data
written.

-C Comparison Mode

Usage:

-Ccompare_mode_number

Description:

Use -C to specify the data comparison mode you want. In general, it is desirable to always do a
byte-for-byte comparison of write and read data, in order to catch any possible data corruption.
However, there may be cases (usually due to system limitations) where the overhead of full buffer
comparisons has a negative effect on I/O throughput to the target. In these cases, you can set the
compare mode to only perform a check on the unique I/O signature in the data buffer. This
substantially reduces processor utilization in the host system. Refer to Chapter 6, “Data Pattern
Reference” for further discussion of I/O signatures. The data comparison modes are:

Default:

By default, the tools will perform a full byte-for-byte comparison of data read against data written.

0 = Disable data comparison

1 = Full byte-for-byte compare (default)

2 = Compare signatures only (2-3 words every 512 bytes)

3 = Compare session id only (16 bit id at 2nd word every sector, typically every 512 bytes)

4 = Session id compare, followed by write/read/full compare. Use with -A switch with options
3 and 4 to scan for specific session id.

Note: To turn off data comparisons completely, use the -n switch. This has the same effect
as using the “0” option.
176 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-n Disable Data Corruption Checking

Usage:

-n

Description:

Use the -n switch to disable data corruption checking (write and read buffer comparisons.) This
switch is normally used for performance testing. Host system processor utilization is greatly
decreased when data comparisons are disabled.

Default:

Data corruption checking is enabled by default.

-u Disable Unique I/O Marks

Usage:

-u

Description:

Use -u to disable the unique I/O signatures placed in the data buffers by the tools. You normally
use this switch for performance testing. I/O signatures are enabled by default and occur every 512
bytes in the I/O buffer. The signatures are extremely useful for debugging I/O errors and catching
corruptions due to stale data. Refer to Chapter 6, “Data Pattern Reference” for further discussion
of I/O signatures. Host system processor utilization may be slightly decreased and I/O throughput
may slightly increase when I/O signatures are disabled.

Default:

I/O signatures are enabled by default.
Medusa Labs Test Tools Suite 177

Using the Command Line Switches Switches by Category

-V Reverify Existing Data to a Specified Data Pattern

Usage:

-V

Use -V to instruct the tools to reverify existing data to a specified data pattern. This switch
assumes that the specified file or device contains a previously written copy of the specified data
pattern. You must specify this switch along with the EXACT data pattern and I/O characteristics
used to write the data pattern previously. Because of the unique characteristics built into the data
patterns, the data must also have been written with the -i1 switch specified on the command line.
Only a single read pass (FOP) will be performed on the file or device. This switch is normally used
as a test of targets which cache large amounts of write data, in order to validate, at a later time, that
the data was successfully committed to disk. You can use this switch to test data backup or
snapshot implementations.

Example:

Write a data pattern (note that -i1 is specified):
pain -l99 -L16 -i1 -w 100 -fg:\test.dat

Read the pattern back from a backup location:
pain -l99 -L16 100 -V -fh:\test.dat

Default:

This option is disabled by default.
178 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

Error Related Switches

This section describes switches related to the tools' handling of error conditions during testing.

• “-H Time to Wait Before Retrying an I/O Operation” on page 179

• “-M I/O Monitoring Mode” on page 179

• “-v Verify/Retry Count” on page 180

• “-! (or -#) Enable Analyzer trigger writes” on page 180

• “--handler Specify Custom Error Handling” on page 181

-H Time to Wait Before Retrying an I/O Operation

Usage:

-Hseconds

Description:

Use the -H switch to specify the number of seconds to wait before retrying an I/O operation that
previously encountered a non-fatal error. Retries, when possible, occur immediately by default.
This switch can be used in conjunction with the -v switch, described in “-v Verify/Retry Count”
on page 180.

Default:

By default, retries are performed immediately.

-M I/O Monitoring Mode

Usage:

-Mseconds

Description:

Use the -M switch to enable the I/O monitoring mode. The tools will display a warning when I/Os
are not completed before the specified number of seconds (for example, -M60 would display a
warning after 60 seconds.) By default, warnings will appear when a completion exceeds the
performance sample time (5 seconds is default sample time.) You can specify a desired timeout or
disable monitoring by indicating a timeout of 0 (-M0.) The I/O monitoring feature will report both
complete I/O halts and individual stuck I/Os. You can also use this mode to catch I/O disruptions
on an analyzer. If you use this switch with the -! or -# switches, an I/O trigger is sent when a halt or
stuck I/O is detected. Note that there is no guarantee that the trigger I/O will reach the analyzer, as
the target may be in an unresponsive state.
Medusa Labs Test Tools Suite 179

Using the Command Line Switches Switches by Category

Default:

By default, I/O monitoring is enabled and errors are reported after the default performance sample
interval of 5 seconds.

-v Verify/Retry Count

Usage:

-vretry_count

Description:

Use the -v switch to retry failed operations and to specify the number of retry attempts. You can
use this switch with the -H switch described earlier in “-H Time to Wait Before Retrying an I/O
Operation” on page 179.

Default:

By default, there is no retry on I/O errors (i.e. -v0), but a mandatory 1 retry on data corruption.

-! (or -#) Enable Analyzer trigger writes

Usage:

-! (-#)

Description:

This is the trigger debug flag. It instructs the tools to send a write I/O to the target device on
critical errors with the idea that an analyzer can be set to trigger on the write data. It also generates
additional log files that are extremely useful in regards to debug and analysis. The data value to
trigger on occurs in the first two words of the data frame.

The options associated with this switch are:

-! Writes 0xCACACACA 0xCACACACA for data corruption trigger
and 0xCACACACA 0xDEADBEEF for I/O error trigger.

-!2 Writes 0xDEADDEAD 0xDEADDEAD for data corruption trigger,
and 0xDEADDEAD 0xDEADBEEF for I/O error trigger.

-!3 Exits the application immediately - no trigger written.

Note: -# can be used as an alternative to the -! command to enable the trigger debug flag.
180 Medusa Labs Test Tools Suite

Switches by Category Using the Command Line Switches

-!4 Executes external application and arguments specified in the MedusaTools.cfg file, which is
located in the configuration folder where MLTT is installed.

The application and arguments can be specified in the configuration file as follows:

EXTERNAL_CMD=executable;

EXTERNAL_ARGS=arguments;

Example:

EXTERNAL_CMD=c:\test\myapp.exe;

EXTERNAL_ARGS=arg1 arg2 arg3;

This option can be used to trigger the Xgig Analyzer to start (trigger) or stop capture. The
application and arguments that must be specified in the configuration file MedusaTools.cfg.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application and arguments as follows:

EXTERNAL_CMD=triggeranalyzer.cmd;

EXTERNAL_ARGS=“My Domain(1,1,1)” XGIG01001234;

Ensure that the batch files, TriggerAnalyzer.cmd and StopAnalyzer.cmd, and the executable,
wget.exe, are in the executable path. The executable, wget.exe, can be downloaded from:
http://users.ugent.be/~bpuype/wget/

Now, the trigger can be activated by using the !4 option. For example, to trigger the Analyzer
to capture on activation of the Pain tool,

pain -!4

See also Xgig Analyzer User Guide Appendix D.

-!5 Writes default (0xCACACACA) trigger and exits immediately.

Default:

Triggering is disabled by default.

--handler Specify Custom Error Handling

Usage:

--handler=<error[,error[,...]]>:[<spec>[,<spec>[,...]]]

Description:

Specify error handling. Use multiple times to handle a list of errors.
Medusa Labs Test Tools Suite 181

Using the Command Line Switches Switches by Category

Handled 'error' values (case insensitive):

Error handler specs:

Example: pain --handler=read,write:tr,xip,pBAD,v3

On read or write errors, regular trigger to target ('tr') using trigger pattern
'BADBADBADBADBADB' ('pBAD' - NOTE: 'BAD' is repeated to create a 64-bit patter integer),
exit the program at the point of error ('xip') if still failed within 3 retries ('v3').

Example: pain --handler=size,timeout,halt:lw,tr,xf

Treat size error, timeout, and halt events as warnings ('lw'). The 'tr' and 'xf' are ignored. This option
can be specified multiple times - all '--handler' specifications are combined to form the error event
handling map.

Default:

Error handling is set using '-!'.

- 'size' I/O transfer size mismatch

- 'corrupt' Data corruption

- 'read' I/O error during read (reported by the OS)

- 'write' I/O error during write (reported by the OS)

- 'open' OS error while opening the target

- close' OS error while closing the target

-'flush' OS error during flush (sync)

- 'timeout' I/O pending for longer than monitor period (see '-M')

-'halt' No I/O reported for the process during sampling interval

-'all' All handled errors

- l<i|w|e> Label it as info ('i'), warning ('w'), or error ('e') - by default all error
events are labeled as 'error'. The other error handling specs are
ignored unless the error event is labeled as 'error'

- t<n|r|x|b> No trigger ('n'), regular trigger to target ('r'), external command ('x'),
or both regular trigger and external command ('b') - if unspecified,
triggering is set by '-!

-x<c|f|i|1>[p] On error, continue running ('c'), exit after current FOP ('f'), exit
immediately at the point of error ('i') after the specified number of
retries only if the retry fails, or exit immediately at the point of error
after first retry (‘1’) whether or not the retry was successful - use the
optional 'p' suffix to exit the program rather than just the affected I/O
thread - if unspecified, the exit-on-error is set by '-!'

- v<count> Set the retry 'count' (override global '-v')

- p<hexstring> Set the trigger pattern to 'hexstring' (up to 16 hexadecimal
characters) - if unspecified, the trigger pattern is set by '-!
182 Medusa Labs Test Tools Suite

Chapter 5
Logging and Output

In this chapter:

• “Status Log” on page 184

• “Performance Summary Log” on page 185

• “Comma-delimited Performance Log” on page 186

• “Error Log” on page 186

• “Sample Logs” on page 186
183

Logging and Output Status Log

Medusa Labs Test Tools (MLTT) provides detailed logs of performance and error conditions. The
log files are written to the current directory from which the tools are executed. Logs are named
according to the WS_NAME (workstation name) variable. The WS_NAME is either read from an
environment of the same name, or the system’s host name is used, if the environment variable is
not found. When you use Catapult, it supplies the WS_NAME to each instance of MLTT it
launches. The WS_NAME is a combination of the system host name and the target device name.
For example, a host named myhost and a target of \\physicaldrive2 would create a
WS_NAME of myhost_2.

Four log files can be created during a test run:

• General status log (created by default)

• Performance summary log (created by default)

• Comma-delimited performance and error log (created by default)

• Error log (created when critical errors occur, on a per-thread basis. Each worker thread creates
its own error log.)

Status Log

The general status log is named after the WS_NAME, with a .log extension, for example,
mysystem.log. Information from a test run is always appended to the log file, so subsequent test
runs will not overwrite the file. The status log records the following details about the test run:

• Start time

• Command line switches—with the settings for each switch, the settings you provided or the
defaults

• Complete parameter and environment values

• Performance samples (the same samples that are displayed on the console screen during a test
run)

• Error messages and counts

Figure 61 on page 188 shows a sample status log.
184 Medusa Labs Test Tools Suite

Performance Summary Log Logging and Output

Performance Summary Log

The performance summary log is named after the WS_NAME with a .prf extension, for example
mysystem.prf. This log file is overwritten with each performance sample. The log shows overall
performance by listing the real-time readout. The performance summary log contains overall
performance details for a test run, including the minimum, maximum, and average I/O operations
(IOPS) and the minimum, maximum, and average MB/s. A count of total errors encountered is
also listed. Catapult uses this file to verify test results. Figure 58 shows a performance summary
log.

Figure 58: Performance Summary Log

The performance summary log (.prf) is created with the same name every time a test case is run.
So, the second and subsequent test cases would overwrite the contents of the performance
summary log. In order to preserve the performance summary log for each test case, the batch file
template, perfbaselinetest.bat, can be used. This batch file can be customized to individual needs:
it essentially copies the performance summary log for each test case to a different name to avoid it
being overwritten. In particular, the variables DEVICE and TARGET need to be customized.

The list of performance summary logs can be consolidated using the executable, prfgrab.exe, into
a comma delimited file (.csv) that can be imported into Microsoft Excel for easy sorting and
viewing. The executable, prfgrab.exe, is only available for Windows; there is no UNIX equivalent
available. However, since .prf files are common across platforms, .prf files from a UNIX system
can be brought into a Windows system where the prfgrab.exe executable can consolidate them into
a .csv file.

pain 10 - 18 -b128k -o -l14 -!
Start Time=05/18/04 15:09:38
[Completion Info]

Elapsed time=45.000
Samples=9
I/O Halts=0

[I/O Operations]
Total=6877
Avg IO/Sec=152.82
Max IO/Sec=153.40
Min IO/Sec=152.60

[Megabytes]
Total=429.81
Avg MB/Sec=9.55
Max MB/Sec=9.59
Min MB/Sec=9.54

[Errors]
Total Errors=0

Test time elapsed
Number of performance samples taken

Number of times performance was equal to 0 MB/s

Total IOPS in elapsed time

Average, Maximum, Minimum IOPS

Total MB/s in elapsed time

in a sample

Average, Maximum, Minimum MB/s in elapsed time
Medusa Labs Test Tools Suite 185

Logging and Output Comma-delimited Performance Log

Comma-delimited Performance Log

This log contains detailed performance samples and error counters that you can import into other
programs for graphing or analysis. This log is named after the WS_NAME, with a .csv extension,
for example, mysystem.csv. The .csv log file is appended with each test run. Figure 59 shows an
example of some of the fields from a comma-delimited performance log after being imported into
a spreadsheet application. It contains column headings and the performance samples.

Figure 59: Comma-delimited Performance Log

Error Log

The error log is named in one of two manners:

• In a single threaded test it is named after the WS_NAME variable, with a .bad extension, for
example mysystem.bad.

• In tests with multiple threads, it is named after the thread number where the error occurred, for
example, thread1.bad.

This log contains pertinent details about the error encountered and is essential for debugging of
data corruption issues. When a data corruption occurs, the entire bad data is listed along with the
expected data and the offset counts where the differentiation in the comparison (the miscompare)
occurred.

Sample Logs

This section contains sample logs generated by MLTT.

Sample Error Log

Figure 60 shows an annotated error log. To help you to evaluate the results, lines from one value to
another show how the same information is presented in different formats.

Elapsed Time Total IOPS Avg IOPS Max IOPS Min IOPS Total MB/s Avg MB/s Max MB/s Min MB/s
2 326 163 164 162 20.38 10.19 10.25 10.13
3 481 160.33 164 155 30.06 10.02 10.25 9.69
4 639 159.75 164 155 39.94 9.98 10.25 9.69
5 795 159 164 155 49.69 9.94 10.25 9.69
6 950 158.33 164 155 59.38 9.9 10.25 9.69
7 1107 158.14 164 155 69.19 9.88 10.25 9.69
8 1264 158 164 155 79 9.88 10.25 9.69
9 1423 158.11 164 155 88.94 9.88 10.25 9.69
10 1581 158.1 164 155 98.81 9.88 10.25 9.69
11 1739 158.09 164 155 108.69 9.88 10.25 9.69
12 1897 158.08 164 155 118.56 9.88 10.25 9.69
13 2056 158.15 164 155 128.5 9.88 10.25 9.69
186 Medusa Labs Test Tools Suite

Sample Logs Logging and Output

Figure 60: Thread.bad Annotated Error Log
Medusa Labs Test Tools Suite 187

Logging and Output Sample Logs

Sample Status Log

Figure 61, Figure 62,and Figure 63 show a sample status log.

Figure 61: Status Log (Page 1 of 3)
188 Medusa Labs Test Tools Suite

Sample Logs Logging and Output

Figure 62: Status Log (Page 2 of 3)
Medusa Labs Test Tools Suite 189

Logging and Output Sample Logs

Figure 63: Status Log (Page 3 of 3)
190 Medusa Labs Test Tools Suite

Chapter 6
Data Pattern Reference

In this chapter:

• “Overview” on page 192

• “Customizing Data Patterns” on page 194

• “Specified Data Patterns” on page 202
191

Data Pattern Reference Overview

Overview

The data pattern library built into the Medusa Labs Test Tools (MLTT) provides the basis for
applying focused signal stress across a wide variety of architectures. There are several
characteristics in our approach to data patterns which make them extremely effective.

Designed For Signal Aggravation

Some of the data patterns are industry standards which have been used for years in various I/O
tools and traffic generators. Medusa Labs has also developed a number of patterns based on our
test experiences. The data pattern library contains signal aggravating patterns suitable to most
major I/O signal paths such as PCI, SCSI, Fibre Channel, and Ethernet. Rather than running
random or empty data streams to the device under test, MLTT provides a means of stressing signal
lines in a targeted, precise manner. This approach greatly increases the chance of identifying signal
related defects in a timely manner.

Customized Patterns

You can customize the majority of the patterns to certain degrees for experimentation during a test
effort. It is not uncommon to find issues with a slight modification of a pattern that a “stock”
pattern failed to detect. You can set up scripted test runs to perform gradual variations on variables
such as signal hold time on a bus. Additionally, you can customize some data patterns to suit
testing on bus architectures of varying widths. This makes it easy to create relevant data patterns
with the same MLTT as new hardware emerges.

Continuously Changing I/O Stream

A common deficiency in data integrity checking is that the data patterns utilized are static (that is,
the same pattern is written repeatedly to the same target area.) This approach does not uncover
data corruptions as a result of stale data being returned from the target. The Medusa Labs Test
Tools overcome this problem by continually modifying the data stream, when possible, with each
successive write. The methods that implement this do not result in any excessive overhead. Most
of our data patterns are modified during run time in two ways.

1 Pattern Reversals – Most patterns in our library have a corresponding bit-for-bit reversal
value. During a test, the data pattern is written out “forward” in one write pass and “reversed”
in the next pass, continuously.

Example (pattern number -l11):

Forward Pattern:

0000FFFF
0000FFFF
0000FFFF
0000FFFF

Reverse Pattern:

FFFF0000
FFFF0000
FFFF0000
FFFF0000
192 Medusa Labs Test Tools Suite

Overview Data Pattern Reference

2 I/O Signing – All of our data patterns have a unique signature added to the data at an interval
of 512 bytes by default. This signature provides additional insurance that the data written is
constantly changing. Additionally, these signatures serve as an important resource in debug
efforts when a failure is encountered. The signatures are extremely useful in analyzing data
captured by a protocol analyzer. See Appendix D, “I/O Signatures for more information about
I/O signatures.
Medusa Labs Test Tools Suite 193

Data Pattern Reference Customizing Data Patterns

Customizing Data Patterns

Each data pattern in MLTT has a default form that is used when you use the
-lpattern_number switch alone. This section covers the available switches that you can use
to customize certain data patterns. Note that not every data pattern can be altered with the switches
discussed here. Refer to the command line help for the currently supported data patterns for each
of these options.

• Using Pattern Modifiers

• -L Number of Times to Repeat the Data Pattern Cycle

• -I Invert Pattern Mode

• -P Modify Data Patterns with a Phase Shift

• Custom Blink Pattern

• -e Custom Blink Pattern Modifier

• -E Custom Blink Pattern Modifier (for walking bit variations)

• -F Custom Blink Pattern Modifier
194 Medusa Labs Test Tools Suite

Customizing Data Patterns Data Pattern Reference

Using Pattern Modifiers

-L Number of Times to Repeat the Data Pattern Cycle

Usage:

-Lcycle_length

Use the -Lcycle_length switch to modify the length or repetition of the selected data pattern’s
cycle. This switch is only supported with certain data patterns. Refer to the command-line help for
current pattern support. The cycle length indicates the number of times to repeat each unit of a data
pattern, before moving to the next unit. In general, the unit of data pattern refers to its length in
bytes or bits.

Examples:

The following example is a data pattern comprised of random byte values. Here, the -L4 modifier
switch causes each byte to be replicated four times.

8-bit pattern: pain -l35 -L4

data: 0xCDCDCDCD
0x59595959
0x83838383
0x7B7B7B7B
…etc.

The following example is a data pattern comprised of a 16-bit incrementing value. Here, the -L8
modifier switch causes each 16-bit value to be replicated eight times.

16-bit pattern: pain -l17 -L8

data: 0x00000000
0x00000000
0x00000000
0x00000000
0x00010001
0x00010001
0x00010001
0x00010001
…etc.
Medusa Labs Test Tools Suite 195

Data Pattern Reference Customizing Data Patterns

-I Invert Pattern Mode

The -I switch causes a bit inversion of the data pattern with each transition cycle. Refer to the
MLTT command-line help for a listing of data patterns that support this option. This switch is
useful for creating patterns for stressing signal lines on bus architectures.

Example:

The following example is a data pattern comprised of walking bytes, at 4-byte intervals. The -I
switch is used to invert each walking value.

32-bit pattern: pain -l10 -I

data: 0x00000000
0xFFFFFFFF
0x01010101
0xFEFEFEFE
0x02020202
0xFDFDFDFD
…etc.
196 Medusa Labs Test Tools Suite

Customizing Data Patterns Data Pattern Reference

-P Modify Data Patterns with a Phase Shift

Use the -P switch to modify supported data patterns with a “phase shift.” This switch works on
most blinking data patterns. The effect is one of shifting the data pattern “out of phase” at the
specified cycle length, such that the square wave created by the on/off bits reverses (Figure 64).
Refer to the MLTT command-line help for a listing of data patterns that support this option.

Figure 64: Data Pattern Phase Shift

You can specify the frequency of this shift as the cycle length, or a default value is used if you
enter -P only. A specified cycle length is multiplied with the pattern length (in bytes) to determine
the frequency of the shift.

Example:

The following command line indicates a blinking 16-bit data pattern. Here, the -P12 modifier
switch causes a phase shift to occur every 12 bytes (l99 is treated as a one byte pattern length).
Custom blinking pattern:

pain -l99 -L16 -P12

data: 0x0000FFFF
0x0000FFFF
0x0000FFFF
0xFFFF0000
0xFFFF0000
0xFFFF0000
0x0000FFFF
0x0000FFFF
0x0000FFFF
…etc.

Phase shift
Medusa Labs Test Tools Suite 197

Data Pattern Reference Customizing Data Patterns

Custom Blink Pattern

Blinking bit patterns are a standard test data stream for bus and serial architectures. You can use a
special data pattern, indicated by -l99 to create a customized blink according to specified
parameters. Specify the blink parameters with an optional walking bit argument on the data pattern
switch itself and several additional switches.

You can specify the base data pattern switch as follows:

-l99 = blink only, no walking bit

-l99w = adds bit walk to both “off” and “on” bit cycles)

-l99o = adds bit walk to “off” bit cycle only,

-l99f = adds bit walk to “on” bit cycle only.

The base data pattern is dependent on the -Lcycle_length parameter, which is used to
indicate the length of the blink in bits.

Examples:

8-bit blink: pain -l99 -L8

data: 0x00FF00FF
0x00FF00FF
…etc.

32-bit blink with full walk: pain -l99w -L32

data: 0x00000000
0xFFFFFFFF
0x80000000
0x7FFFFFFF
0x40000000
0xBFFFFFFF
…etc.

32-bit blink with “on” walk: pain -l99o -L32

data: 0x00000000
0xFFFFFFFF
0x80000000
0xFFFFFFFF
0x40000000
0xFFFFFFFF
…etc.

32-bit blink with “off” walk: pain -l99f -L32

data: 0x00000000
0xFFFFFFFF
0x00000000
0x7FFFFFFF
0x00000000
0xBFFFFFFF
…etc.

You can customize the blinking pattern further by using the -ebit_length, -Ehold_cycles,
and -F switches.
198 Medusa Labs Test Tools Suite

Customizing Data Patterns Data Pattern Reference

-e Custom Blink Pattern Modifier

Usage:

-ebit_length

This switch allows you to specify different bit lengths for the “on” bits. Use this switch in
conjunction with the -L switch, which serves the special purpose of controlling the length of the
“off” bits when used together with the -e switch.

Examples:

No bit walk: pain -l99 -L28 -e4

data: 0x0000000F
0x0000000F
…etc.

With bit walk: pain -l99w -L8 -e24

data: 0x00FFFFFF
0x807FFFFF
0x40BFFFFF
…etc.
Medusa Labs Test Tools Suite 199

Data Pattern Reference Customizing Data Patterns

-E Custom Blink Pattern Modifier (for walking bit variations)

Usage:

-Ehold_cycles

This switch allows you to specify a blink value to repeat for the number of hold cycles indicated,
before walking a bit. This switch is valid with the data pattern switches -l99w, -l99o, and
-l99f.

Example:

The following command line results in a 16 bit blinking data pattern that walks a bit every 2
cycles:

pain -l99w -L16 -E2

data: 0x0000FFFF
0x0000FFFF
0x80007FFF
0x80007FFF
…etc.
200 Medusa Labs Test Tools Suite

Customizing Data Patterns Data Pattern Reference

-F Custom Blink Pattern Modifier

Usage:

-F

This switch causes a “flip/flop” variation to occur within the blinking data pattern. By “flip/flop,”
we mean that the pattern starts at an initial value, inverts (blinks) the value, returns to the initial
value, then walks a bit and repeats the sequence. This switch is intended to be used with the data
pattern switches -l99w, -l99o, and -l99f.

Example:

pain -l99w -L32 -F

data: 0x00000000
0xFFFFFFFF
0x00000000
0x80000000
0x7FFFFFFF
0x80000000
…etc.
Medusa Labs Test Tools Suite 201

Data Pattern Reference Specified Data Patterns

Specified Data Patterns

In addition to the supplied base data patterns, it is possible to specify a particular pattern with
command-line switches.

-y Create Data Patterns Based on Various Lengths

Usage:

-ypattern_value

Use the -y switch to specify a value to repeat in the write buffers and create the data pattern. You
can use this switch with several data pattern numbers (-l) to create patterns based on various
lengths. You can use this switch with the following data pattern numbers:

-l1

-l2

-l4

Example:

pain -l4 -y0x55AA55AA

data: 0x55AA55AA

0x55AA55AA

…etc.

-l0, -@file_name Read Data Pattern from a File

The -l0 data pattern is a special pattern number that indicates that the data pattern is to be read in
from an existing file. Use the -@ switch to indicate the path and file that contains the data pattern.
The file must be greater than or equal in size of the buffer size. The file is read up to the size
indicated by the specified buffer size (-b#). If the file is larger than the buffer size, it will be
continually read to fill the I/O buffers, so that large data patterns may be used effectively.

Example:

pain -b512k -l0 -@c:\data\pattern.dat

-@ Path and File of Data Pattern

Use the -@ switch to indicate the path and file that contains the data pattern. The file must be
greater than or equal in size of the buffer size.

Example:

pain -b512k -l0 -@c:\data\pattern.dat
202 Medusa Labs Test Tools Suite

Chapter 7
Catapult Test Tool Automation

In this chapter:

• “Basic Usage” on page 204

• “Catapult Switches” on page 207

• “Scripting” on page 233
203

Catapult Test Tool Automation Basic Usage

Catapult is a target discovery tool included with the test tool suite that acts as a shell for the I/O
tools. You use Catapult to discover targets available to the host system and pass these targets to the
other test tools for I/O testing. Catapult also has features that facilitate test scripting and
automation.

Basic Usage

Catapult discovers available local or remote drives for file system, logical, or physical access.
Available drives can be listed without starting an I/O test by using the following switches:

File System list: catapult -f

Logical drive list: catapult -l

Physical drive list: catapult -p

Remote drive list: catapult -r (use this switch with -f, -l, or -p)

Drive Listing Examples:

Figure 65 shows a listing of physical drives discovered on a Windows system. Figure 66 shows a
listing of physical drives discovered on a Linux system. Figure 67 shows a file system drive
discovery on a Windows system.

Figure 65: Catapult Physical Drive Discovery on Windows

Note: In order to run to physical devices, you must be logged in with administrator access.

C:\> catapult -p
Medusa Labs Test Tools 2.5.0
Catapult Version 1.3.5 Copyright (c)2004-2006, JDSU Inc.
All rights reserved.
Build date: Sep 12 2007 15:46:55

Searching for physical drives...

Available physical drives:

Indx Drive Name SCSI ID INQUIRY DATA Exclusions
--
 \\.\PhysicalDrive0 0:0:0:0 ST330630A 3.21 A P
 \\.\PhysicalDrive1 2:0:0:0 MAXTOR ATLASU320_18_SCAB430 A S
 \\.\PhysicalDrive2 2:0:1:0 MAXTOR ATLASU320_18_SCAB430
 \\.\PhysicalDrive3 4:0:0:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive4 4:0:1:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive5 4:0:2:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive6 4:0:3:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive7 4:0:4:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive8 4:0:5:0 SEAGATE ST39103FC 0004
204 Medusa Labs Test Tools Suite

Basic Usage Catapult Test Tool Automation

Figure 66: Physical Drive Discovery on Linux

Figure 67: File System Drive Discovery on Windows

The output for file system and logical drives is the same on Windows platforms, but I/O test access
is different. Logical access utilizes destructive “raw” partition access. File system access is
restricted to data files on a file system partition.

Note: In order to run to physical devices, you must be logged in with root access.

catapult -p

FOUND: Bootdev=/dev/sda

Medusa Labs Test Tools 2.5.0
Catapult Version 1.3.5 Copyright (c)2004-2006, JDSU Inc.
All rights reserved.
Build date: Sep 12 2007 15:46:55

Indx Device Name SCSI ID Inquiry Data Exclusions

00 /dev/hda Not Scsi VMware Virtual IDE Hard Drive
01 /dev/hdb Not Scsi VMware Virtual IDE Hard Drive
02 /dev/sda 0:0:0:0 VMware, VMware Virtual S 1.0 PS
03 /dev/sdb 0:0:1:0 VMware, VMware Virtual S 1.0
04 /dev/sdc 0:0:2:0 VMware, VMware Virtual S 1.0
05 /dev/sdd 0:0:3:0 VMware, VMware Virtual S 1.0
06 /dev/sde 0:0:4:0 VMware, VMware Virtual S 1.0
07 /dev/sdf 0:0:5:0 VMware, VMware Virtual S 1.0
08 /dev/sdg 0:0:6:0 VMware, VMware Virtual S 1.0

C:\> catapult -f
Medusa Labs Test Tools 2.5.0
Catapult Version 1.3.5 Copyright (c)2004-2006, JDSU Inc.
All rights reserved.
Build date: Sep 12 2007 15:46:55

Available file systems:

Indx Drive FileSys Size(MB) Label/Mount Exclusions

C:\ NTFS 32171 (unlabeled disk) A PS
D:\ NTFS 47829 (unlabeled disk)
Medusa Labs Test Tools Suite 205

Catapult Test Tool Automation Basic Usage

To run I/O to discovered targets, the desired I/O tool and its switches are passed to Catapult on the
command line, immediately following switches used for Catapult.

Catapult Command Example:

The following command launches an instance of Pain on each discovered physical drive.

catapult -p pain -t10 -b128k -o

By default, Catapult runs tests on all eligible drives of the specified type (physical, logical, or file
system). Target access can be limited with the inclusion/exclusion switches described in “Catapult
Switches” on page 207.

In order to keep log files for each target separate, Catapult creates a new directory for each tool
instance in the current working directory. The new directory name is derived from the system or
host name and the target device (for example, winhost_1 for \\.\physicaldrive1, winhost_F
for \\.\F, etc.) Each session of the I/O tools is launched from its respective directory so that
each session’s log files are stored in a uniquely identified working directory.

Note: When you use Catapult to start I/O tests, do NOT specify a target (-f switch) as a Test
Tool argument. Catapult will supply this switch to each Test Tool instance for you.

Warning: It is important to understand that by default, ALL drives listed WILL be included
in I/O tests unless they are excluded due to a reason stated in the listing output. You must use
the drive include or exclude switches discussed in the following sections if you want to test
only certain drives.

Warning: Logical and physical drive access is destructive! Any existing data on the drives
WILL be destroyed by I/O tests!

Note: Catapult will launch an instance of the specified test tool to all eligible drives that are
detected. To prevent overwriting critical data, the test tool performs several checks to verify
drive eligibility. I/O testing is skipped on drives that do not pass the checks. Catapult skips
drives with active (bootable) partitions, drives with no volume label, and the drive where the
operating system is installed. On Windows platforms, drives A:- C: are excluded and logical
drive access requires that a drive letter be assigned.
206 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

Catapult Switches

This section contains a complete listing of the Catapult command line switches in alphabetical
order. You can combine multiple switches, but you must enter all Catapult switches before you
enter the I/O tool name and its switches.

• -a Auto-mode

• -b Log retrieval

• -c Clean Directories

• -d Delay Test Start

• -e Increment Data Pattern

• -f File system access

• -g Change directory prefix

• -h online help

• -i Include drive (also -i.str_Include drive based on inquiry data)

• -j Limit inquiry ioctls

• -k Kill tool processes

• -l Logical drive access

• -m Minimize tool windows

• -n Enable prompts

• -now Run all tests with no windows

• -o Override device exclusions

• --off Offline disk

• --on Online disk

• -p Physical drive access

• -q Removes excluded drives

• -r remote access

• --restart-service Restarts the Medusa agent

• -s Set tool starting offset

• -t Multi-target mode

• -v Verify mode

• -w Watch mode

• -x Exclude drive (also -x.str_Exclude drive based on inquire data)

• -y Specify grace period

• -z Debug mode
Medusa Labs Test Tools Suite 207

Catapult Test Tool Automation Catapult Switches

-a Auto-mode

Usage:

-aseconds

Description:

Use the -a switch to run tests for the duration specified in seconds. Use this switch primarily in
scripted test runs. The test tool runs for the specified number of seconds, after which Catapult
terminates all instances of the tool. Catapult will remain running during the I/O test. If Catapult is
stopped (for example, by using Ctrl+C), Medusa Labs Test Tools (MLTT) will not be terminated
when the time duration expires.

Example:

The following example runs an instance of Pain to each detected physical drive for a period of 300
seconds.

catapult -a300 -p pain -t10 -b128k -o

Default:

There is no default value for seconds to run; you must supply a value.

-b Log retrieval

Usage:

-b -rserver

Description:

Use the -b switch to retrieve logs from the servers that you specify with the -r switch. This will
retrieve only the specified and/or used subdirectories from the default testing location on the
remote system. If the local system already has some of the directories or logs, you will be
prompted to overwrite existing data. To force the overwrite without a prompt, use -b!.

Example:

The following example finds the logs on the remote server.

catapult -b -rserver

Default:

There is no default log retrieval. You must specify servers with the -r switch, along with the -b
switch.
208 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-c Clean Directories

Usage:

-c

Description:

Use the -c switch to clear out the working directories used in tool sessions created by Catapult.
You must specify a drive type switch (-f, -l, or -p) along with the -c switch. Catapult removes ALL
files in the working directories before launching the specified test tool. Use this switch a single
time prior to running a scripted test.

Example:

The following example deletes all files in the working directories before running an instance of
Pain to each detected physical drive.

catapult -c -p pain -t10 -b128k -o

You can also clear log files without running a test tool as shown in the following example:

catapult -c -p

Default:

There are no additional arguments. The contents of working directories for the specified drive type
(file system, logical, or physical) are cleared.

Caution: Do not include this switch during a scripted run. Removing log files makes it
impossible to determine test success or failure. Make sure that you have backed up any log
files that you want to keep before using this switch!
Medusa Labs Test Tools Suite 209

Catapult Test Tool Automation Catapult Switches

-d Delay Test Start

Usage:

-dseconds

Description:

Use the -d switch to create a delay between tool sessions created by Catapult. By default, each tool
instance is started simultaneously. For example, 10 detected drives would result in 10 instances of
Pain being started at the same time. Depending on variables such as drive count, thread count, and
buffer size, you might want to use this switch to create a ramp-up period to lessen the initial
“shock” to the host system or target.

Example:

The following example runs an instance of Pain with a 10 second delay between each launch to
detected file system drives.

catapult -d10 -f pain -t10 -b128k -o

Default:

There is no default value for seconds; you must supply a value.
210 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-e Increment Data Pattern

Usage:

-e

Description:

Use the -e switch as a scripting aid to increment data pattern numbers. This switch is supported on
Windows platforms only. Use this switch within a batch file that steps through various data pattern
variations. Catapult reads the environment variable PATTERN and creates a batch file (incdat.bat)
that can be called from a script to increment the value of the variable by 1.

Example (Windows batch file):

The following batch file example runs an instance of Pain for 60 seconds to detected physical
drives with varied parameters on each run. The data pattern is incremented with each loop through
the batch file.

Default:

This switch increments the environment variable PATTERN by 1.

set PATTERN=10
:TOP
catapult -a60 -p pain -t10 -b16k -o -l%PATTERN%
catapult -a60 -p pain -t10 -b32k -o -l%PATTERN%
catapult -a60 -p pain -t10 -b64k -o -l%PATTERN%
catapult -a60 -p pain -t10 -b128k -o -l%PATTERN%
catapult -e
REM incdat.bat is created by catapult -e
Call incdat.bat
if '%PATTERN%' == '20' set PATTERN=10
goto TOP
Medusa Labs Test Tools Suite 211

Catapult Test Tool Automation Catapult Switches

-f File system access

Usage:

-f

Description:

Use the -f switch to have Catapult scan for targets with file systems. When you use this switch
without an argument, Catapult simply lists detected targets. When you specify a test tool, Catapult
launches the tool on the detected targets. The tools will create data files for I/O traffic.

When Catapult detects targets, some devices may be excluded for the following reasons:

A : Active (possibly a boot device)
G : No signature or Bad/unlabeled VTOC
I : Inquiry failed
M: No media or insufficient memory
P : Partitions found on device (Windows physical disks only)
S : System device (where the OS is installed)
U : Excluded by use of inclusion/exclusion options
V : Device belongs to a volume group
W: Device is flagged as swap space or in a volume group that is flagged as swap space
Z : Device or path to device is inaccessible

Example:

When you execute the following switch, it lists all detected file system drives.

catapult -f

The following example runs an instance of Pain to all detected file system drives.

catapult -f pain

Default:

There is no default access method. You must specify a file system, logical, or physical access
switch.
212 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-g Change directory prefix

Usage:

-gdirectory_prefix

Description:

Use the -g to change the prefix of the directories used by the tools. Catapult uses the system host
name for the directory prefix by default.

It will either prepend the directory with the prefix or it will create a folder.

Example:

catapult -p -gtest1 pain will prepend test1 to the folder

catapult -p -gc:\test1 will create a folder called test1 to put the files in.

Default:

Catapult will use the system host name for a working directory prefix.

-h online help

Usage:

-h [-option]

Description:

Use the -h switch to display online help.

You can also use the -h switch to display online help for a specific option.

Example:

catapult -h

This example would show online help for Catapult.

catapult -h -t

This example would show online help for Catapult’s -t option.

Note: -? can be used as an alternative to using the -h command to display the online help.
Medusa Labs Test Tools Suite 213

Catapult Test Tool Automation Catapult Switches

-i Include drive

Usage:

-iinclude_list

Description:

Use the -i switch to explicitly include drives for I/O testing. Drives not listed with this switch are
excluded from testing. List drives by number for physical access and by letter for file system
access on Windows platforms. On UNIX platforms, a number is listed next to each detected drive.
List individual drives in comma-delimited format. You can indicate ranges by using a dash (-).

Use the '.' function to specify drives to include by inquiry, excluding all other targets.

-i.<str> would specify drives to include by inquiry, excludes all other targets.

Examples:

The following example runs an instance of Pain to the specified physical drives.

catapult -i1,2,3,5-10 -p pain

The following example runs an instance of Pain to the specified file system drives.

catapult -if,g,h-k,z -f pain

An example of inclusion/exclusion based on inquiry would be: If the user wishes to include/
exclude devices based on specific information returned during and inquiry (i.e. manufacturer or
model number), this information is placed after the dot; as in

catapult -p -i.Seagate

would include any drives that returned the string "Seagate" in their inquiry response.

Default:

All drives are included by default. You must include or exclude the switches to customize the list
of drives accessed in testing.
214 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-j Limit inquiry ioctls

Description:

Use the -j option to specify input/output control timeout limit in seconds

Example:

This example sets the IOCTL timeout value to 2 seconds.

catapult -j2 -p pain -t10 -b128k -o

Default:

By default, the timeout value is 1 second.

-k Kill tool processes

Usage:

-k [-r hosts tool]

Description:

Use the -k switch to have Catapult send a kill signal to ALL running MLTT processes. This switch
will cause ALL running tests to stop immediately and exit ALL MLTT processes.

You can also use the -k switch to kill ALL MLTT processes running on specific hosts.

Example:

catapult -k

catapult -k -rserver_name

Default:

This switch when used alone will kill ALL running MLTT processes.
Medusa Labs Test Tools Suite 215

Catapult Test Tool Automation Catapult Switches

-l Logical drive access

Usage:

-l

Description:

Use the -l switch to cause Catapult to scan for logical (partitioned) drives.

This switch is primarily for tests against targets such as an operating system RAID set. A common
usage would be to utilize a striped set of drives (RAID 0), accessed as a raw partition, for HBA
performance testing. When you use this switch without an argument, Catapult simply lists detected
targets. When you specify a test tool, Catapult launches the tool on the detected targets.

When Catapult detects targets, some devices may be excluded for the following reasons:

A : Active (possibly a boot device)
G : No signature (Windows physical devices only)
I : Inquiry failed
M: No media or insufficient memory
P : Partitions found on device (Windows physical disks only)
S : System device (where the OS is installed)
U : Excluded by use of inclusion/exclusion options
V : Device belongs to a volume group
W: Device is flagged as swap space or in a volume group that is flagged as swap space
Z : Device or path to device is inaccessible

Example:

The following example lists all detected logical drives.

catapult -l

The following example runs an instance of Pain to all detected logical drives.

catapult -l pain

Default:

There is no default access method; you must specify a file system, logical, or physical access
switch.

Warning: Logical drive access is destructive! Any existing data on the partition WILL be
destroyed by I/O tests!

Note: In order to run to logical devices, you must be logged in with administrator (Windows)
or root (Unix) access.
216 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-m Minimize tool windows

Usage:

-m

Description:

Use the -m switch to have Catapult create instances of launched MLTT in minimized windows.
This is useful when working with other applications, such as a performance monitoring utility.

Example:

The following example runs an instance of Pain to all detected physical drives, with each Pain
window minimized.

catapult -m -p pain

Default:

By default, tool instances created by Catapult appear in open windows.

-n Enable prompts

Usage:

-n

Description:

Use the -n switch to indicate that Catapult should prompt the user if error logs (*.bad files) from a
previous test are discovered in the tool working directories. Catapult will run a check for error logs
before starting the I/O tool. This switch can be useful in scripted tests to prevent the script from
continuing after the I/O tool encounters critical errors.

Example:

The following example runs an instance of Pain to all detected physical drives with this prompting
if error logs are discovered.

catapult -n -p pain

If error logs are found, you will be prompted for the action to take:

Found existing error log: C:\test\VMW2KAS_1\VMW2KAS_1.bad
Delete log? ((Y)es/(N)o/Yes(A)ll/N(o)All):

Default:

By default, Catapult does not check for error logs.
Medusa Labs Test Tools Suite 217

Catapult Test Tool Automation Catapult Switches

-now Run all tests with no windows

Usage:

-now

Description:

Use the -now switch to run all tests with no windows (i.e. in the current console). The output can
be piped to scripts, but if multiple systems are specified with '-r', the output will be jumbled. This
option turns on '-t' multitarget option.

Example:

The following example will run the tests without displaying them in the console window.

catapult -now

Default:

No default is specified. Catapult will attempt to create new console or terminal windows for the
test processes.

-o Override device exclusions

Usage:

-o

Use the -o switch to allow testing on volumes that have been automatically excluded. Using this
option without include/exclude options will run to all attached devices except for devices marked
as system (S). Specific overrides can be done by letter, i.e. to run to active devices but still keep
other exclusions, use -oa. Please note that the system exclusion cannot be overridden.

Example:

The following example runs an instance of Pain to all detected physical drives with the drive
signature check disabled.

catapult -o -p pain

Default:

By default, Catapult checks physical drives for a valid drive signature on Windows platforms.

Warning: This switch should be used with extreme caution! You can accidentally lose data.
We highly recommend that you allow Catapult to perform drive signature checking. Use
Windows Disk Management to assign drive signatures to unsigned drives.
218 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

--off Offline disk

Description:

In Windows Server 2008 or later, use the --off option to set drives to the 'offline' state. The tools
cannot run on drives that are offline. This allows selected drives to be excluded from running in a
test.

Example:

The following example sets all physical drives to Offline.

catapult -p -o --off

The following example sets the 2nd and 3rd physical drives to Offline.

catapult -p -i2,3 -o --off

--on Online disk

Description:

In Windows Server 2008 or later, use the --on option to set drives to the 'online' state when the
drives are in 'offline' state. The Tools cannot run on drives that are offline.

Example:

The following example sets all physical drives to Online.

catapult -p -o --on

The following example sets the 2nd and 3rd physical drives to Online.

catapult -p -i2,3 -o --on
Medusa Labs Test Tools Suite 219

Catapult Test Tool Automation Catapult Switches

-p Physical drive access

Usage:

-p

Description:

Use the -p switch to have Catapult scan for physical drives.

This is the most common test access method used in hardware tests, as it bypasses as many layers
of the operating system as possible. On Linux platforms, block devices will be automatically
bound to “raw” devices by Catapult. When you use this switch without an argument, Catapult
simply lists detected targets. When a test tool is specified, Catapult launches the tool on the
detected targets.

When Catapult detects targets, some devices may be excluded for the following reasons:

A : Active (possibly a boot device)
G : No signature (Windows physical devices only)
I : Inquiry failed
M: No media or insufficient memory
P : Partitions found on device (Windows physical disks only)
S : System device (where the OS is installed)
U : Excluded by use of inclusion/exclusion options
V : Device belongs to a volume group
W: Device is flagged as swap space or in a volume group that is flagged as swap space
Z : Device or path to device is inaccessible

Example:

The following example lists all detected physical drives.

catapult -p

The following example runs an instance of Pain to all detected physical drives.

catapult -p pain

Default:

There is no default access method; you must specify a file system, logical, or physical access
switch.

Warning: Physical drive access is destructive! Any existing data on the drive WILL be
destroyed by I/O tests.

Note: In order to run to physical devices, you must be logged in with administrator
(Windows) or root (Unix) access.
220 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-q Removes excluded drives

Description:

Use the -q option to hide the excluded drives from being listed.

Example:

This example will list all physical drives but hide those that have device exclusion

Catapult -p -q
Medusa Labs Test Tools Suite 221

Catapult Test Tool Automation Catapult Switches

-r remote access

Usage:

-r

Description:

Use the -r switch to have Catapult scan for remote systems running MLTT.

This switch allows Catapult to start and stop tests on remote systems. MLTT must be previously
installed on the remote systems. When you use this switch without an argument, Catapult simply
lists all detected remote systems on the current subnet. When used with a basic switch (-f, -l,
-p) Catapult lists the remote targets for those categories. In order to run a test, you must specify
one or more system names. You can specify system names or IP addresses as a comma delimited
list. You can also use the asterisk (*) as a wildcard character to specify systems names. When a test
tool is specified, Catapult launches the tool on the detected remote targets. The -i and -x switches
may used to include or exclude specific remote targets on specified systems.

Running catapult -r, also creates the file hosts.dat. This file will contain a list of IP
addresses for the discovered host systems running MLTT. This file can be used in later test
sessions to start remote tests by running catapult -r[path]hosts.dat. You can also
use wildcards to customize the file creation. For example:

catapult -rde* would create a hosts.dat file with host names starting with 'de.'

catapult -r10.10.0.* would create a hosts.dat file with hosts whose IP
addresses start with 10.10.0.

A hosts.dat file may be created manually by creating a text file with one host name or IP
address per line.

Results from the -r Catapult scan are stored in log files saved in the MLTT installation directory on
the remote systems in the sub-directory named “catapult_tests.”

• For Windows systems the path is:
c:\program files\JDSU\medusa labs\test tools\catapult_tests\

• For Unix systems the path is:
/opt/medusa_labs/test_tools/catapult_tests/

Use the -b switch to copy the remote files to a local system.

When using wildcards with some UNIX shells, you have to enclose the wild-carded system names
in quotes, for example, catapult -r ‘sys*’

Note: In order to run to physical devices remotely, you must be logged in to the remote
system with administrator (Windows) or root (Unix) access.
222 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

Example:

The following example lists all detected remote systems.

catapult -r

The following example lists all detected remote physical drives on the specified server.

catapult -p -rserver_name

The following example runs an instance of Pain to all detected remote physical drives.

catapult -p -rserver_name pain

The following example runs an instance of Pain to the specified drives on the specified servers.

catapult -p -rserver1,server2 -iserver1:1,2 -iserver2:1 pain

The following example shows the use of the wildcard character to run an instance of Pain to all
drives that begin with the name “medusa” or the IP address of 10.22.0 on the specified servers.

catapult -p -rmedusa*,10.22.0* pain

Default:

There is no default access method; you must specify a remote file system, logical, or physical
access switch.
Medusa Labs Test Tools Suite 223

Catapult Test Tool Automation Catapult Switches

--restart-service Restarts the Medusa agent

Description:

Use the --restart-service switch to restart the Medusa agent. If you use this to restart the
agent, it will interrupt process monitoring functions, so do not use this switch while you are
running tests. This should be used as an option during a troubleshooting process if a particular
system is showing problems, such as communicating with local or remote MLTT installations or if
the GUI does not start up properly, etc.

Example:

The following example restarts the Medusa agent.

catapult --restart-service

Caution: If the --restart-service switch is used, tests that are currently running will be
interrupted.
224 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-s Set tool starting offset

Usage:

-soffset_amount

Description:

Use the -s switch to have Catapult pass a starting offset parameter (-x) to each instance of MLTT.
The starting offset value for each launched instance of MLTT is incremented by the offset value
(in megabytes (MB)) provided with this switch. You can use this switch to debug test
configurations involving multiple initiator systems on a common set of targets. The offset amount
must be a value that is greater than the number of worker threads run by the tools times the file
size. For example, with 10 threads and a 10 MB file size, the offset amount needs to be at least
100 MB. See “-x Multi-Share Mode 1 - Multiple Sessions Offset” on page 167, for more
information about the MLTT -x switch.

Example:

The following example runs an instance of Pain to all detected physical drives. Each instance of
Pain has the -x switch appended to the command line. The offset value of the -x switch is
incremented by 10 with each successive instance of Pain. With each Pain instance passed,
a -x switch is incremented by 10.

catapult -s10 -p pain -t4 1

The launched instances of Pain have the following command lines:

pain -t4 1 -x0

pain -t4 1 -x10

pain -t4 1 -x20

…etc.

Default:

There is no default value for the offset amount; you must specify a value.

Note: -s<offset> ignores any user-supplied units and only uses MB as the units.
Medusa Labs Test Tools Suite 225

Catapult Test Tool Automation Catapult Switches

-t Multi-target mode

Usage:

-t (Use with -f, -l, or -p to set target type.)

Description:

The -t switch is used to indicate that Pain or Maim will run to multiple targets in a single process.
By default, the I/O tools will run a single process per target. A new working directory with the
identifier “MultiTarget” in the directory name will be created for the I/O tests to run in. This
switch will change the log output format of the tools. The main tool performance output will
display aggregate throughput for all targets in use. The general log file (*.log) will contain both
aggregate numbers and individual target numbers for each performance sample. This switch
essentially creates a list of targets in a file called “targets.dat” and passes this file as the argument
for the I/O tool’s -f switch. If a test tool is not specified on the Catapult command line, the
targets.dat file will be created without starting any I/O tests.

Example:

The following example runs a single instance of Pain with all detected physical drives as targets.

catapult -p -t pain -t4 -b4k -o 1

Default:

Use the -t switch to override Catapult’s default behavior of running a tool process per target. The
target type (-f, -l, or -p) must be specified as well.
226 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-v Verify mode

Usage:

-v

The -v switch can be used to perform a quick verification of a test run. This switch takes a number
of other arguments that you can use as criteria for a pass/fail check of a test run. Catapult uses the
performance summary log (*.prf) file created by MLTT for this check. Because this file is
recreated by each test run, this check must be performed immediately after each test run that you
want to check. If a verification check fails, Catapult will display a prompt and wait for user
intervention. However, if you would like to run a verification on existing log files (post processing
method), the -vp argument will scan any existing *.csv files instead of the *.prf files. The *.csv
files are continuously appended to and can encompass multiple test runs.

The arguments you use with the -v switch are as follows:

l Disables logging to vlog.log (enabled by default). The vlog.log is created in
the current working directory and contains the same output that you see on the
screen during a verification.

aMegabytes_sec Minimum average MB/s allowed.

bIO_sec Minimum average IO/s allowed.

iHalt_num Maximum number of I/O halts to allow.

mMegabytes_sec Minimum MB/s allowed.

nMegabytes_secMinimum IO/s allowed.

e Check for any errors in test run.

p Use post-processing method. This will search all subdirectories of the current
directory and process .csv files that are of the form MLTT uses. Use this
argument in combination with other -v arguments.

pfile_name Use this argument to process a specific .csv file by specifying its name.

q Quiet mode. Only summary information is printed.

v Verbose mode. More detailed information is printed.

Specify each argument individually after the -v switch as shown in the following example.
Medusa Labs Test Tools Suite 227

Catapult Test Tool Automation Catapult Switches

Example:

The following example will verify the performance logs in the working directories used for
physical drive tests.

catapult -p -vm5 -va10.5 -vi0 -ve

The verification will report a failure and prompt the user if:

• The minimum MB/s for the test run was below 5 MB/s.

• The average MB/s for the test run was below 10.5MB/s

• One or more I/O halts occurred.

• Any error conditions occurred.

Default:

There are no default verification checks. The checks must be specified with additional arguments.
228 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-w Watch mode

Usage:

-wwait_seconds

Description:

Use the -w switch primarily in conjunction with the auto mode (-a) switch. When you include this
switch, Catapult monitors the test tool working directories for the creation of any error logs. If it
detects error logs, Catapult terminates all instances of the running test tool after the specified wait
seconds have elapsed. We recommend that you specify a reasonable number of wait seconds to
allow for any tool instances that might be dumping error details to a file to complete. Under some
circumstances, you might want a more immediate test termination. This switch is useful for cases
where you are using a protocol analyzer to capture an error condition and want to avoid
overrunning a capture buffer.

Example:

The following example runs an instance of Pain to all detected physical drives for 10 minutes.
Catapult watches the working directories for the appearance of any error logs. If error logs are
detected, Catapult waits for 30 seconds to allow time for error logs to be completed; then all
instances of Pain are terminated.

catapult -w30 -a600 -p pain

Default:

The default value for the seconds to wait is 1. We recommend a higher value under normal test
circumstances.
Medusa Labs Test Tools Suite 229

Catapult Test Tool Automation Catapult Switches

-x Exclude drive

Usage:

-xexclude_list

Description:

Use the -x switch to explicitly exclude drives from I/O testing. All drives that you list with this
switch are excluded from testing. All other detected drives are included in testing. List the drives
by number for physical access and letter for file system access on Windows platforms. On UNIX
platforms, a number is listed next to each detected drive. List individual drives in a
comma-delimited format. You can indicate ranges by using a dash (-).

Use the '.' function to specify drives to exclude by inquiry, including all other targets.

-x.<str> would specify drives to exclude by inquiry, includes all other targets.

Examples:

The following example runs an instance of Pain to detected physical drives and excludes the
specified drives following the -x switch.

catapult -x1,2,3,5-10 -p pain

The following example runs an instance of Pain to detected file system drives and excludes the
specified drives following the -x switch.

catapult -xf,g,h-k,z -f pain

An example of inclusion/exclusion based on inquiry would be: If the user wishes to include/
exclude devices based on specific information returned during and inquiry (i.e. manufacturer or
model number), this information is placed after the dot; as in

catapult -p -x.Seagate

This example will exclude any drives that returned the string "Seagate" in their inquiry response.

Default:

All drives are included by default. You must use the include or exclude switches to customize the
list of drives accessed in testing.
230 Medusa Labs Test Tools Suite

Catapult Switches Catapult Test Tool Automation

-y Specify grace period

Description:

Use the -y option to modify the grace period used in a timed test. Grace period is the time that time
catapult gives the test process (pain or maim) to exit on its own after the test is done. After that
time period, if the test process still has not exited, catapult will try to forcibly terminate the test
process.

Example:

In the following example, the "-a300" command tells catapult to launch the pain test process to
run for 300 seconds. Pain should run for 300 seconds and exit gracefully. After 300 seconds,
catapult waits for 10 seconds ("-y10") for the pain process to exit. If pain process still has not
exited after the specified 10 seconds, catapult will try to terminate the process.

catapult -a300 -y10 -p pain -t10 -b128k -o

Default:

By default, the grace period is 20 seconds.
Medusa Labs Test Tools Suite 231

Catapult Test Tool Automation Catapult Switches

-z Debug mode

Usage:

-z

Description:

Use the -z switch to instruct Catapult to create a debug log file (catapult.dbg) in the current
working directory. You can use this log file to troubleshoot run time issues.

Example:

The following example runs an instance of Pain to all detected physical drives and creates a debug
file.

catapult -z -p pain

Default:

Debug mode is disabled by default.
232 Medusa Labs Test Tools Suite

Scripting Catapult Test Tool Automation

Scripting

The command line interface of MLTT is very conducive to scripted test runs. Catapult facilitates
the creation of scripts that provide a broad range of test coverage in just a few lines. The following
examples show Catapult scripts for Windows batch files.

Example 1 (Windows batch file)

The following example is a Windows batch file that will launch I/O tests using Pain on all detected
physical drives. The duration of each test variation is set to 600 seconds. Different data patterns
are run with various block sizes for the duration period. The data pattern number is incremented up
one number by Catapult after a complete pass through all block sizes. When data pattern number
31 is reached, the test cycle is ended.

Refer to “-e Increment Data Pattern” on page 211 for more information about the PATTERN
environment variable.

Note: It is important to take the time following a scripted test run to examine the log files
generated for any errors or anomalies.

REM Data pattern / block size variations
set PATTERN=1
:START
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b4k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b8k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b16k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b32k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b64k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b128k
catapult -e
REM incdat.bat is created by catapult -e
call incdat.bat
if '%PATTERN%'=='31' goto STOP
goto START
:STOP
Medusa Labs Test Tools Suite 233

Catapult Test Tool Automation Scripting

Example 2 (Windows batch file)

The following example is a Windows batch file that will launch I/O tests using Pain on all detected
physical drives. The duration of each test variation is set to 600 seconds. Variations of the Custom
Blink Pattern (-l99) are used to induce signal stress on a 64 bit PCI bus. See “Custom Blink
Pattern” on page 198.

REM 64 bit blinking bus variations
:START
catapult -p -a600 pain -o -l99 -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99w -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99o -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99f -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e4 -L60 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e8 -L56 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e16 -L48 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e48 -L16 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e56 -L8 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e60 -L4 -t8 -! 1 -b128k
:STOP
234 Medusa Labs Test Tools Suite

Appendix A
Data Pattern Numbers

This appendix lists the data pattern numbers and their descriptions as they are listed in the Pain and
Maim help.
235

Data Pattern Numbers

No. Description

0 Read pattern from data file (specify file with -@filename)

1 8-bit value - Fixed pattern (specify value with -y0x##). If -y is not specified or set to 0,
a default value is chosen

2 16-bit value - Fixed pattern (specify value with -y0x####). If -y is not specified or set to 0,
a default value is chosen

3 32-bit value - Fixed pattern - 1st FOP 0xFFFFFFFF, 2nd:0x00000000

4 32-bit value - Fixed pattern (specify value with -y0x########). If -y is not specified or set to 0,
a default value is chosen

5 32-bit value - Noise pattern #1 - Checkerboard

6 32-bit value - Noise pattern #2 - Blinking bus

7 32-bit value - Noise pattern #3 - Walking/XOR bits

8 8-bit value - Walking pattern 0x00 - 0xFF - 0x00

9 8-bit value - Walking double 0x0000, 0x0101, 0x0202...etc

10 8-bit value - Walking quad 0x00000000, 0x01010101...etc

11 16-bit value - Noise pattern #4 - SCSI Blinking bus

12 16-bit value - Noise pattern #5 - SCSI Alternating parity bus

13 64-bit value - Noise pattern #6 - Checkerboard

14 64-bit value - Noise pattern #7 - Blinking bus

15 64-bit value - Noise pattern #8 - Walking/XOR bits

16 16-bit value - Walking pattern 0x0000-0xFFFF

17 16-bit value - Walking pattern 0x0000-0xFFFF-0x0000

18 32-bit value - Fibre Channel Low Frequency Alternating

19 32-bit value - Fibre Channel Low Frequency Fixed #1

20 32-bit value - Fibre Channel Low Frequency Fixed #2

21 32-bit value - Fibre Channel Low Transition Alternating

22 32-bit value - Fibre Channel Low Transition Fixed #1

23 32-bit value - Fibre Channel Low Transition Fixed #2

24 32-bit value - Fibre Channel High Transition Fixed

25 32-bit value - Fibre Channel CJPAT - All Transition

26 32-bit value - Fibre Channel CSPAT - Supply Noise Test

27 32-bit value - Fibre Channel JTPAT - Jitter Tolerance

28 64-bit value - Alternating Blink 00000000FFFFFFFFF FFFFFFFF0000000

29 64-bit value - Walking Bits 0101010101010101 0202020202020202 etc.

30 32-bit value - Network noise pattern (0x492/0x6db reversed)
236 Medusa Labs Test Tools Suite

Data Pattern Numbers

No. Description

31 16-bit value - Checkerboard

32 32-bit value - Walking pattern - repeats per FOP

33 32-bit value - Walking pattern - repeats after 4GB written

34 32-bit value - 10G Continuous Jitter Pattern

35 8-bit value - Random

36 32-byte value - Chipset Noise Pattern #1 - Modified l18

37 32-bit value - Fibre Channel Low Frequency Transitions

38 32-bit value - Fibre Channel Neutral Noise pattern #1

39 32-bit value - Fibre Channel Neutral Noise pattern #2

40 32-bit value - Fibre Channel Blink pattern #1

41 64-bit value - Bit increment/decrement

42 16-bit value - Alternating blink (bit, nibble, byte, word)

43 64-byte value - Fibre Channel ISI Killer Pattern

44 32-bit value - Fibre Channel 1KJPAT (CJTPAT plus ISI Killer)

45 8-bit value - Walking Flip/Flop Bytes 00FF0001FE0102FD02 etc.

46 32-bit value - Data pattern set to buffer memory addresses.

47 Scrambler pattern one (58 bits random, 134 bits 0.)

48 Scrambler pattern two (single bit on, then off bits with -L#.)

49 Scrambler pattern three (Off bits with -L#, then single bit on.)

50 32-bit value - Fibre Channel Blink pattern #2

51 32-bit value - Fibre Channel Blink pattern #3 (high frequency)

52 32-bit value - Fibre Channel Blink pattern #4 (2 bits off/on)

53 32-bit value - Fibre Channel Blink pattern #5 (low frequency)

54 32-bit value - SATA Composite-bit Pattern (COMP)

55 32-bit value - SATA Low Translation Density Pattern (LTDP)

56 32-bit value - SATA High Translation Density Pattern (HTDP)

57 32-bit value - SATA Low Frequency Spectral Content Pattern (LFSCP)

58 32-bit value - SATA Simultaneous Switching Outputs Pattern (SSOP)

59 32-bit value - SATA Lone-Bit Pattern (LBP)

60 8-bit value - 8b/10b Random Neutral Pattern

61 8-bit value - SAS CJTPAT (JTPAT RD+/RD-)

62 8-bit value - 8b/10b Random Neutral Pattern with inversion

63 Fibre Channel JSPAT - scrambled jitter pattern

64 Fibre Channel JTSPAT - jitter tolerance scrambled pattern

69 8-bit value - Fixed pattern of 0x00000000
Medusa Labs Test Tools Suite 237

Data Pattern Numbers

No. Description

94 32-bit value - PCI Parity alternating pattern

96 16-bit value - Alternating 0xAAAA, 0x5555

99 Custom Blink (use -L# to specify blink length in bits)

 l99 blink only, no walking bit

 l99w adds bit walk to both “off” and “on” cycles

 l99o adds bit walk to “on” cycle only,

 l99f adds bit walk on “off” cycle only.

 Combine with -e# (length of blinking), -E# (Data pattern hold time before transition),
and -F (flip/flop pattern mode) for other interesting variations.
238 Medusa Labs Test Tools Suite

Appendix B
Test Guidelines and Examples

In this appendix:

• “A Word About Hardware Configurations” on page 240

• “Maximum Bandwidth Stress Testing” on page 240

• “Performance Testing” on page 242

• “Data Integrity Testing” on page 243
239

Test Guidelines and Examples A Word About Hardware Configurations

This appendix shows examples of Medusa Labs Test Tools (MLTT) used in common test
scenarios.

A Word About Hardware Configurations

The hardware required to drive data rates at the maximum bandwidth (wire speed) varies with the
architecture that is being tested. For example, in order to test a 2 Gb/s Fibre Channel device, an
initiator system running MLTT needs at least a PCI 64-bit/66 MHz slot to drive the full duplex
capabilities of the link (400MB/s). It is important to consider the bandwidth capabilities of the
device under test and evaluate each component of the configuration to identify any weak links.

Generally speaking, when testing for maximum bandwidth we suggest you have the fastest
initiator system possible—that is, the processor, host bus, PCI, etc. A large memory capacity is
also crucial to efficiently handle large I/O buffers.

Maximum Bandwidth Stress Testing

This section contains some guidelines for testing a device at the maximum bandwidth supported,
for verification of capability, signal integrity testing, and/or data integrity.

In order transfer the maximum amount of data with the fewest interrupts in the host system, we
recommend using large block sizes whenever possible. A system with a fast host bus and ample
memory should be able to efficiently use block sizes of 512k or more. On target devices with
caching capabilities, it is desirable to keep the file size small.

On enterprise class multi-processor systems, Pain is a good choice for driving wire speed traffic.
Because each thread uses its own file or device offset, a large block I/O size with a file size equal
to the block size is often a good choice when testing for bandwidth with Pain. This allows the best
full duplex opportunities with threaded I/O.

Examples Using Pain:

Fastest possible, no data comparison:

pain -f\\.\physicaldrive1 -o -t8 -b512k 512k -u -n

Where:

-o = Hold target open (performance gain)

-t8 = Create 8 worker threads

-b512k = 512KB block (buffer size)

512k = 512KB file size or offset size used by each thread

-u = Disable I/O signatures (slight performance gain)

-n = Disable data compares (great performance gain)
240 Medusa Labs Test Tools Suite

Maximum Bandwidth Stress Testing Test Guidelines and Examples

The following command line is the same as the prior example, with full data comparison added.
Fastest possible with data comparison:

pain -f\\.\physicaldrive1 -o -t8 -b512k 512k

The Maim tool also has good full duplex capabilities in certain modes, using a single worker
thread. Maim uses a single file and, for best results, we recommend that the file size be equal in
size to the block size times the queue depth.

Examples Using Maim:

Fastest possible, no data comparison:

maim -f\\.\physicaldrive1 -m16 -o -Q16 -b512k 8 -u -n

Where:

-m16 = Static queue depth (higher full duplex opportunity)

-o = Hold target open (performance gain)

-Q16 = Queue depth of 16 I/Os of specified buffer size

-b512k = 512KB block (buffer size)

8 = 8MB file size or offset size (total used by single worker thread)

-u = Disable I/O signatures (slight performance gain)

-n = Disable data compares (great performance gain)

The following command line is the same as the prior example, with full data comparison added.
Fastest possible with data comparison:

maim -f\\.\physicaldrive1 -m16 -o -Q16 -b512k 8
Medusa Labs Test Tools Suite 241

Test Guidelines and Examples Performance Testing

Performance Testing

The approach to performance testing is similar to maximum bandwidth testing. Again, large
blocks to small files at fairly low queue depths typically bring out the highest throughput levels.
For IOPS tests, the queue depth will probably need to be raised as block size is lowered. Maim
might get better results than Pain in some cases, as the queue depth can be raised considerably,
without the overhead of high thread numbers.

Depending on the specific device or system to be tested, there are certain other variations you
might want to use. For example, when testing a storage device it is interesting to run performance
tests with file sizes that fit within device cache and some that overrun the cache size. This
methodology gives a broader picture of the device’s capabilities. As another example, when
testing an intermediary device such as a switch, it is desirable to run performance tests that include
various initiators to target configurations. These include one-to-one, one-to-many, many-to-one,
and many-to-many.

For performance tests, data comparisons and I/O signatures should always be disabled. It is best to
test with a variety of block sizes, to identify any problem areas.

High Bandwidth Example:

pain -f\\.\physicaldrive1 -o -t8 -b512k 512k -u -n

Where:

-o = Hold target open (performance gain)

-t8 = Create 8 worker threads

-b512k = 512KB block (buffer size)

512k = 512KB file size or offset size used by each thread

-u = Disable I/O signatures (slight performance gain)

-n = Disable data compares (great performance gain)

High IOPS Example:

The following command line is the same as the prior example, with a smaller (512 byte) block and
file size.

pain -f\\.\physicaldrive1 -o -t8 -b512 512 -u -n

The following command line uses maim as an IOPS test example, with a higher queue depth and
static queue depth.

maim -f\\.\physicaldrive1 -o -Q32 -b512 512 -u -n -m16

The above examples are full-duplex-style tests. It is always a good idea to run half duplex tests
(write only and read only.) To do this, use the -w or -r switches with command lines similar to
those given in the examples.

When testing devices that support data compression, it is interesting to test performance with both
compressible and non-compressible patterns (ex. All zeros with -l69 and random data with -l35,
respectively.)
242 Medusa Labs Test Tools Suite

Data Integrity Testing Test Guidelines and Examples

Data Integrity Testing

Data integrity testing should be as comprehensive as time allows. Ideally, a wide variety of block
sizes, file sizes, and data patterns should be utilized. Larger file sizes are often used to get longer
streams of write or read traffic. Data patterns that are particularly aggravating to the architecture
under test should be emphasized (ex. Fibre Channel, Parallel SCSI, PCI, etc.)

Many data corruption issues are discovered in association with fault injection tests. Data integrity
testing should be an interactive process on devices with fault tolerant features.

Data integrity testing is also a good candidate for scripted testing. Typically, once a particular
catalyst is introduced, data corruptions will manifest quickly in a test. Using scripts of short test
sequences of continuously changing I/O parameters and data patterns, it is possible to achieve
broad coverage in a relatively short time frame. See “Scripting” on page 233, in Chapter 7,
“Catapult Test Tool Automation” for more information on setting up scripted tests.

Whenever possible, you should use protocol analyzers for data integrity testing. You can set the
analyzer to trigger on a special value with MLTT -! or -# switches. Even when analyzers are not
available, you should use the -! or -# switches, as they also cause a complete dump of the write
and read buffers contents to files. This is extremely useful when debugging a corruption.

Examples:

Pain with a standard PCI aggravating pattern:

pain -f\\.\physicaldrive1 -o -t10 -b512k 10 -l14 -!

Maim with a standard Fibre Channel aggravating pattern:

maim -f\\.\physicaldrive1 -o -Q8 -b512k 100 -l25 -!

Backup or Snapshot Testing

MLTT has a data verification mode that works well for situations involving the validation of
backup or snapshot implementations. You use the -V switch for this purpose; it is available in both
Pain and Maim. This switch verifies the data in a file or on a device against a specified data
pattern. The data can exist in a different location than where it was originally written.

In order for this switch to work, you must specify the exact data arguments used to create the data.
The data should be created in a single write pass without I/O signatures. (See Appendix D, “I/O
Signatures” for more information about this topic.)

Example:

One write pass of a pattern, with no signatures:

maim -Q16 -b128k -l17 -L4 -u -w 100 -i1 -fg:\data1\test.dat

Verification of pattern in file at another location:

maim -Q16 -b128k -l17 -L4 -u 100 -V -fh:\data2\test.dat
Medusa Labs Test Tools Suite 243

Test Guidelines and Examples Data Integrity Testing

Maximum Queue Testing

A good target test case is its handling of a queue full condition. The point at which this can happen
varies by target, but in general, most targets will handle no more than 256 concurrent requests.
Maim’s asynchronous I/O dispatching is an excellent method for testing queue full conditions.

Example:

The following command line launches Maim with a queue depth burst of 257 I/Os. Note that the
file size specified must be large enough to contain the indicated block size times the queue depth.

maim -f\\.\physicaldrive1 -o -b64k 20 -Q257

Full Coverage Target Testing

Maim has a full coverage I/O mode that you can use in tests that cover the full capacity of a
target’s storage space. This mode runs across the entire device, with writes and reads operating in
sections of the device equal to the file size at a time.

Example:

The following command lines run write and read commands, with data comparison, across the
entire drive in 50MB sections at a time.

maim -f\\.\physicaldrive1 -O -b64k 50 -Q16 -m18

maim -f\\.\physicaldrive1 -O -b64k 50 -Q16 --full-device

The following command line runs a write command followed by immediate read-back with data
comparison to random locations within the entire drive:

maim -f\\.\physicaldrive1 -O -b64k -Q16 -m17
244 Medusa Labs Test Tools Suite

Appendix C
Debug Example

In this appendix:

• “Default Trigger Value” on page 246

• “Locating the Trigger Data Frame in TraceView” on page 248

• “Finding the Write and Read Operations” on page 249

• “Error Log Created” on page 250

• “Finding the Corrupt Data Frame” on page 252

• “Using I/O Signatures” on page 255

• “Using the FindLBA Utility” on page 256

This appendix contains a sample debug of a data corruption scenario.

In this example, the debug output of Medusa Labs Test Tools (MLTT), in conjunction with a
protocol analyzer, can quickly isolate the device that caused a data corruption to occur. For this
scenario, we use a simple Fibre Channel configuration, with a JDSU Xgig Analyzer between the
HBA and a switch.

Figure 68: Fibre Channel Debug Test Configuration
245

Debug Example Default Trigger Value

In this configuration, a basic Pain stress test is run on a Windows initiator to a physical drive on
the target device. The analyzer is set to trigger on a special value sent by MLTT when the -! or -#
switch is used. The trace buffer should be set to allow sufficient room for capture of relevant
traffic preceding a trigger. Typically, a 90/10 split (10% post fill after trigger) is sufficient. It may
be desirable to capture a smaller frame payload in some cases, but it is generally best to capture
full payload when data integrity testing is performed.

Default Trigger Value

The default trigger value for a data corruption error is 0xCACACACA. The analyzer is set to look for
this value at the start of a data frame payload (Figure 69).

Figure 69: Setting the Default Trigger Value on the Analyzer

When a data corruption is detected by MLTT, the trigger I/O is immediately sent and this should
be detected by the analyzer. It should be noted, however, that there are cases where the trigger I/O
may be unsuccessful due to complete lack of response from a target or a device driver problem.
246 Medusa Labs Test Tools Suite

Default Trigger Value Debug Example

TRIGGER.OUT marks - for CACA trigger

If -! used, the trigger will be 0xcacacaca in p/l word 0 and 1.

If -!2 used, the trigger will be 0xdeaddead in p/l word 0 and 1.

Other values as follows:

Note that all values will be stored in AABBCCDD format (big-endian) for all platforms.

Word Values Conditions

2 - 7 LBA Information Only if -f specified on command line. Is only valid/useful if Physical
Drive. If logical drive (stripe), divide by #drives and add 0x20. If -f not
provided on command line, will be set to 0xCACA

2 - Corrupted LBA

3 - Starting LBA

4 - Ending LBA

5 - Starting offset (bytes)

6 - Ending offset (bytes)

7 - Base offset (bytes)

8 Program Name First four characters

9 WS_NAME Last four characters

10 Flags DD = thread_num

Intel = DDCCBBAA CC = 01 if buffer reversed, 00 if forwards

Sparc = AABBCCDD BB = 00 if I/Os forward, 01 if backwards

AA = Data pattern (-l value) - in HEX

11 Loop count

12 Buffer Size

13 Completed I/Os

14 Block# / Error Type AA = Error Type (as identified in the following list)

02 (2) STARTUP_ERROR
03 (3) MALLOC_ERROR
04 (4) LOG_ERROR
05 (5) SEEK_ERROR
06 (6) RETRY_ERROR
07 (7) SIZE_ERROR
08 (8) OPEN_ERROR
09 (9) FLUSH_ERROR
0A (10) CLOSE_ERROR
0B (11) READ_ERROR

0C (12) WRITE_ERROR
0D (13) CORRUPT_ERROR
0E (14) INITIAL_ERROR
0F (15) REMOVE_ERROR
10 (16) UNKNOWN_ERROR
11 (17) TIMEOUT_ERROR
12 (18) LICENSE_ERROR
13 (19) IOCTL_ERROR
14 (20) HALT_ERROR

Intel = DDCCBBAA BBCCDD = Block Number

Sparc = AABBCCDD

15 Index info

Intel = DDCCBBAA

SPARC = AABBCCDD Maim - AABB is pending I/Os, CCDD is I/O Index
Medusa Labs Test Tools Suite 247

Debug Example Locating the Trigger Data Frame in TraceView

Locating the Trigger Data Frame in TraceView

To locate the corruption problem in the trace, start by finding the trigger data frame (Figure 70).

Figure 70: Locating the Trigger Data Frame in TraceView
248 Medusa Labs Test Tools Suite

Finding the Write and Read Operations Debug Example

Finding the Write and Read Operations

Once the trigger data is located, the write and read operations which resulted in the data corruption
can be found in the preceding trace data. When test configurations involve multiple targets, it may
be desirable to filter the trace view such that exchanges between the initiator and the target in
question are displayed. In this example, the target destination ID (D_id) is used to build a pair of
filters that isolate this ID as both source and destination. This allows for viewing of all
bidirectional traffic between the initiator and this target.

Figure 71: Setting Filters to Isolate IDs
Medusa Labs Test Tools Suite 249

Debug Example Error Log Created

Error Log Created

MLTT creates an error log with the extension “.bad” when a critical error is encountered. This log
is named after the thread that encountered the error in a multi-threaded test or after the host name
in a single threaded test. The log file contains information when data corruptions are discovered,
including a side by side listing of expected and miscompared data. A summary section includes
relevant details about the corruption. Figure 72 shows the error log for this sample.

Figure 72: Sample Error Log

Miscompare: Offset: 0X008010, Wrote: 40130000, Read: 00000000 - returning error!

Writing trigger to offset: 0X0F0000, LBA: 0X000780

Dumping r/w buffers to: MEDUSA-00160000.3w and MEDUSA -00160000.3r...

04/15/04 15:18:22: Data corruption! Elapsed time: 00:00:01:01

Miscompare at 0X160000 bytes read in loop 312!

Device: \\.\physicaldrive1

Offset: Returned: Expected:

--

0X168010: 00000000 = 40130000 = @

0X168014: 00000000 = 400B400A = @ @

ERR: --

ERR: Session ID: 0X000DD4 / 3540

ERR: Loop count: 312

ERR: Elapsed time: 00:00:01:01

ERR: File name: \\.\physicaldrive1

ERR: Starting Offset: 0X900000 / 9437184

ERR: Ending Offset: 0XD00000 / 13631488

ERR: Base Offset: 0X100000 / 1048576 (already included)

ERR: * Note LBA values are valid only for physical device access.

ERR: Corrupt LBA: 0X005300

ERR: Physical LBA Range: 0X004800 to 0X006800

ERR: Data pattern: 17 / 16-bit inc/dec pattern

ERR: Pattern Cycle length: 1

ERR: Pattern Direction: Up/Even

ERR: I/O Direction: Backward

ERR: Write Buffer address: 0X1300000 / 19922944

ERR: Read Buffer address: 0X1310000 / 19988480

ERR: I/O Size: 0X010000 / 65536

ERR: Block number: 0X000017 / 23

ERR: Block start: 0X160000 / 1441792

ERR: Error start: 0X168010 / 1474576

ERR: Error end: 0X168018 / 1474584

ERR: Error length: 0X000008 / 8

ERR: --

Retrying read on corruption...

Retry didn't show corruption!
250 Medusa Labs Test Tools Suite

Error Log Created Debug Example

Because this example is using a physical drive as the target, the corrupt LBA reported in the error
log is accurate and can be used to locate the write and read commands in the trace. Note that the
corrupt LBA refers to the start of the I/O request and not necessarily the start of the data corruption
within the I/O data.

In this example, the corrupt LBA is 0x005300:

ERR: Corrupt LBA: 0X005300

The last command to this LBA on the target in question is located in a backward search from the
trigger point (Figure 73).

Figure 73: Backward Search for Last Command to the LBA

The trigger I/O was sent immediately upon discovery of the data corruption and the last command
to the corrupt LBA before the trigger was the read command. When we find the read command,
we can trace the read data to find the point where the miscompare begins. We can determine the
location of the corrupt data in the data transfer from the error log by looking at the block start and
error start addresses:

ERR: Block start: 0X160000 / 1441792
ERR: Error start: 0X168010 / 1474576

Subtracting the error start from the block start provides the offset of the miscompare from the start
of the read data transfer:

0X168010
-0X160000
0X008010 = 32784 bytes
Medusa Labs Test Tools Suite 251

Debug Example Finding the Corrupt Data Frame

Finding the Corrupt Data Frame

Since this example is over Fibre Channel, we will divide the byte offset by the size of the frame
data payload (2048 in this case) in order to locate the data frame in question.

32784 / 2048 = 16 (frame number)

This data frame is located in the trace (frame 16 would be SEQ_Cnt 0x10). See (Figure 74):

Figure 74: Data Frame in Trace

In this data frame, we find the corrupted data listed in the error log – two words of zeroes instead
of the expected data.

Offset: Returned: Expected:
--
0X168010: 00000000 = 40130000 = @
0X168014: 00000000 = 400B400A = @ @

It is possible that the data in the trace could read correctly, indicating the corruption originated
from something inside the initiator system (such as the HBA or PCI bridge) rather than the target.

Searching back for the corrupt LBA past the read command will take us back to the write
command, where the expected data can be verified (Figure 75).
252 Medusa Labs Test Tools Suite

Finding the Corrupt Data Frame Debug Example

Figure 75: Verifying the Expected Data

It is entirely possible for the write data to be corrupted, if the corruption is due to a component in
the initiator system. This would be classified as a “write corruption.” In this example, the error log
shows that we are dealing with a read corruption:

Retrying read on corruption...
Retry didn't show corruption!

MLTT will always attempt a read retry when a corruption is discovered. This provides an
important data point by determining whether the corruption is persistent (committed to the media)
or intermittent (possibly the result of a cache error on a target.) In this example, it would appear
that the target is the culprit, given that incorrect data was returned in a valid data frame with no
CRC errors. It is also possible, although less likely, that the switch between the analyzer and the
target caused the error. To be certain, you would want to move the analyzer to the connection
between the switch and the target.

In this example, due to the nature of our configuration and the Fibre Channel protocol, we were
able to easily locate the relevant commands with the LBA. It often becomes necessary to use
another search method when the LBA provided by the error logs is not valid because of a file
system or logical volume configuration. Also, some protocols, such as iSCSI can be difficult to
debug due to commands being imbedded in packets.
Medusa Labs Test Tools Suite 253

Debug Example Finding the Corrupt Data Frame

In such cases, it may be necessary to search for the unique I/O signature in the block in question.
Using the block and error starting addresses from the error log, it is possible to locate the I/O
signature closest to the corruption. (Refer to Appendix D, “I/O Signatures” for more information)
In our current example, we know that the error occurred at offset 0X8010 into the I/O.

ERR: Block start: 0X160000 / 1441792
ERR: Error start: 0X168010 / 1474576

 0X168010
-0X160000
 0X008010

Using a hex editor, the write or read buffer data can be opened and this offset may be located
(Figure 76). MLTT automatically dumps the write and read buffers to files with the -! or -#
switches are used. The file names are provided in the error log.

Figure 76: Locating the Offset

Miscompare: Offset: 0X008010, Wrote: 40130000, Read: 00000000 - returning error!

Writing trigger to offset: 0X0F0000, LBA: 0X000780
Dumping r/w buffers to: MEDUSA-00160000.3w and MEDUSA -00160000.3r...
254 Medusa Labs Test Tools Suite

Using I/O Signatures Debug Example

Using I/O Signatures

The I/O signatures occur every sector size, which is typically 512 bytes or 0x200 hex. The
signatures are three words in length and are placed at a two word offset into each sector area. In
this example, the nearest signature is at 0x8008 in the buffer files.

0X008000 00 40 01 40 Sector Start
0X008004 02 40 03 40
0X008008 0D D4 00 03 Signature Start
0X00800C 01 38 00 40
0X008010 00 00 13 40 Signature End
0X008014 0A 40 0B 40
0X008018 0C 40 0D 40
0X00801C 0E 40 0F 40
0X008020 10 40 11 40
0X008024 12 40 13 40

This signature can be used to set up a search filter in a trace viewer application (Figure 77).

Figure 77: Using I/O Signature for a Search Filter in TraceView
Medusa Labs Test Tools Suite 255

Debug Example Using the FindLBA Utility

Using the FindLBA Utility

FindLBA is useful in cases where the logical block address (LBA) reported in the I/O tool error
logs is not accurate because the tools are not directly referencing areas of the physical media. You
can use FindLBA in conjunction with a protocol analyzer to identify the actual LBA
corresponding to a file offset reported by the test tools. FindLBA sends a “ping” of consecutive
reads to a specified offset, which you can identify in a protocol trace. FindLBA is most useful
when you need help finding I/O commands that resulted in data corruption in a protocol trace
capture.

The following examples show how the FindLBA utility can be used.

Example 1

The thread1.bad log file from a test case that showed data corruption has the lines:

ERR: Error length: 0x0200 / 512”, “Miscompare: Offset: 0x00000000000FF800

and

ERR: Starting offset: 0x100000 / 1048576

This means that there are 0x200 bytes of corrupted data 0x100000 + 0xFF800 or 0x1FF800 bytes
into the file. On a Microsoft Windows system, you can run the command:

findlba -f\\.\PhysicalDrive2 -o0x1ff800

The Xgig trace will show SCSI Reads to that LBA on the storage where the data was detected as
corrupt. You can then use the trace to find the actual LBAs that were reported as corrupt.

Example 2

You want to send a 16,384 byte Read to LBA 0x1000 on a disk drive formatted for 512 bytes per
sector. The Offset is 0x200 bytes/sector times LBA 0x1000. The buffer size is 0x4000.

On a Microsoft Windows system, the command is:

findlba -f\\.\PhysicalDrive2 -o0x200000 -b0x4000

Note: When entering the offset in the FindLBAcommand, enter the offset in bytes only.
FindLBA does not support common modifiers, such as k, M, etc.
256 Medusa Labs Test Tools Suite

Appendix D
I/O Signatures
257

I/O Signatures

By default, Medusa Labs Test Tools (MLTT) adds a unique mark or signature to each I/O. This
signature is placed in the selected data pattern at every sector interval in the I/O buffer. The
purpose of this signature is two-fold.

First, this is a vital component of data integrity checking in MLTT. A constantly changing data
stream is essential for catching cases of out-of-order write completions or “stale data” corruptions.
Stale data corruptions are cases where data from an old write operation is returned after a new
write operation and read back with data comparison to the same LBA. If the exact same data were
used for every write operation, there would be no way to detect if the read data returned is for the
immediately preceding write.

Second, I/O signatures are extremely useful in debugging issues discovered with MLTT. The
information embedded in the signature can be correlated with log files from a test run to determine
the initiator, target, I/O position within a file, LBA, etc.

The signature used by MLTT has the following format.

Offset Data
0x0008: AAAABBBB
0x000C: CCDDDDDD
0x0010: EEEEEEEE

Where:

AAAA = Session ID (A unique ID created from the initiator and target names.)

BBBB = Thread number (Pain) or I/O Index number (Maim)

CC = Loop count (Based on file operations (FOPS))

DDDDDD = Block number

EEEEEEEE = LBA (Only accurate on physical devices.)

When the time stamp switch (-U) is used, the following addition is made to the I/O signature:

Offset Data

0x0014: FFFFFFFF

Where:

FFFFFFFF = Standard 32-bit OS time stamp in seconds

Additionally, millisecond resolution may be added with the -Um switch. This is a two byte addition
to the time stamp in the I/O signature:

Offset Data

0x0018: GGGGXXXX

Where:

GGGG = Millisecond time stamp

XXXX = Data pattern

This signature is inserted into the data pattern at every sector interval (normally every 512 bytes.)
258 Medusa Labs Test Tools Suite

I/O Signatures

Example (with -Um switch and data pattern of all 0xAA):

00000000 AA AA AA AA
00000004 AA AA AA AA
00000008 04 E9 00 01
0000000C 00 00 00 00
00000010 00 00 08 00
00000014 40 86 D1 7B
00000018 01 A9 AA AA
0000001C AA AA AA AA
00000020 AA AA AA AA
…
00000200 AA AA AA AA
00000204 AA AA AA AA
00000208 04 E9 00 01
0000020C 00 00 00 00
00000210 00 00 08 01
00000214 40 86 D1 7B
00000218 01 A9 AA AA
0000021C AA AA AA AA
00000220 AA AA AA AA
…etc.

Note that the Session ID is written to the error logs, so you can correlate the logs with traces or
captures. When running tests to file systems or logical partitions, you can use the LBA to
determine relative file offset by simply multiplying the LBA by the sector size.
Medusa Labs Test Tools Suite 259

I/O Signatures

260 Medusa Labs Test Tools Suite

Appendix E
Exit Codes

The Medusa Labs Test Tools (MLTT) return codes at exit that you can use in custom batch files or
shell scripts to take action when an error occurs during a scripted run.

The following example shows an exit code in a script:

echo off
REM Run pain for 5 minutes
pain -o -l35 -t4 -d300
REM Check exit code, 2 or higher means there was an error
If ERRORLEVEL 2 goto ERROR
echo Success! Exit code: %ERRORLEVEL%
goto END
:ERROR
echo Error! Exit code: %ERRORLEVEL%
:END
261

Exit Codes

The exit codes used by MLTT are listed below.

0 SUCCESS
1 LOOP_DONE
2 STARTUP_ERROR
3 MALLOC_ERROR
4 LOG_ERROR
5 SEEK_ERROR
6 RETRY_ERROR
7 SIZE_ERROR
8 OPEN_ERROR
9 FLUSH_ERROR
10 CLOSE_ERROR
11 READ_ERROR
12 WRITE_ERROR
13 CORRUPT_ERROR
14 INITIAL_ERROR
15 REMOVE_ERROR
16 UNKNOWN_ERROR
17 TIMEOUT_ERROR
18 LICENSE_ERROR
19 IOCTL_ERROR
20 HALT_ERROR

Each exit code is described in the following section.
262 Medusa Labs Test Tools Suite

Exit Codes

Exit Code Descriptions

The exit code descriptions are listed in numerical order.

SUCCESS (0)

This value is used as a generic non-error exit code. It is normally only returned when the Test Tool
exits from a display of the on-line help.

LOOP_DONE (1)

This value indicates a normal exit from a test that was limited by iteration count (-i switch) or
duration (-d switch.)

STARTUP_ERROR (2)

This value indicates an error was encountered during the processing of environment variables or
command line switches.

MALLOC_ERROR (3)

This value indicates there was an error encountered in a memory allocation attempt.

LOG_ERROR (4)

This value indicates an error was encountered while accessing one of the log files.

SEEK_ERROR (5)

This value indicates a seek operation on a target device or file has failed.

RETRY_ERROR (6)

This value indicates an I/O operation has failed and attempts to retry the operation were
unsuccessful.

SIZE_ERROR (7)

This value indicates an I/O operation has failed due to an unexpected number of bytes returned or
an unexpected end of file was reached. For example, this error would occur if a read of 64KB
returned only 62KB.

OPEN_ERROR (8)

This value indicates an error occurred on an attempt to open a target device or file during a test
run.

FLUSH_ERROR (9)

This value indicates an error occurred on an attempt to flush data from a write operation from
cache to the target device or file.
Medusa Labs Test Tools Suite 263

Exit Codes

CLOSE_ERROR (10)

This value indicates that an attempt to close an open handle to a target device or file has failed.

READ_ERROR (11)

This value indicates a read operation on a target device or file has failed.

WRITE_ERROR (12)

This value indicates a write operation on a target device or file has failed.

CORRUPT_ERROR (13)

This value indicates data corruption has been detected on a target device or file.

INITIAL_ERROR (14)

This value indicates the initial open of a target device or file has failed.

REMOVE_ERROR (15)

This value is not currently used in MLTT. Device open, read, or write errors due to device removal
will be reported specifically.

UNKNOWN_ERROR (16)

This value indicates an error has occurred that is not classifiable as any other specific defined error
condition.

TIMEOUT_ERROR (17)

This value indicates that one or more individual I/O operations have not completed within the
monitoring time period (5 seconds by default.)

LICENSE_ERROR (18)

This value indicates an error has occurred during a security check against the Test Tool’s license.
This may be because a license has expired or the license file could not be located.

IOCTL_ERROR (19)

This value indicates an error has occurred during an IOCTL operation. Some MLTT use low level
IOCTL calls for various operations on target devices.

HALT_ERROR (20)

This value indicates that ALL I/O traffic has ceased during the monitoring time period (5 seconds
by default.)
264 Medusa Labs Test Tools Suite

Appendix F
Architecture Bandwidths

This appendix lists bandwidth capabilities for various architectures.
265

Architecture Bandwidths PCI

PCI

32bit/33 MHz - 132 MB/sec

64bit/33 MHz - 264 MB/sec

64bit/66 MHz - 528 MB/sec

PCI-X

64bit/100 MHz - 792 MB/sec

64bit/133 MHz - 1 GB/sec

PCI-Express

1x=500 MB/s (Full Duplex)

4x=2 GB/s (Full Duplex)

8x=4 GB/s (Full Duplex)

16x=8 GB/s (Full Duplex)

Fibre Channel (Full Duplex)

1Gb - 200 MB/sec

2Gb - 400 MB/sec

4Gb - 800 MB/sec

8Gb - 1600 MB/sec

10Gb - 2.4 GB/sec

16Gb - 3200 MB/sec

Fast Ethernet (Full Duplex)

25 MB/sec

Gigabit Ethernet (Full Duplex)

250 MB/sec

10Gb - 2500 MB/s

SAS

1.5Gb - 150 MB/s

3.0Gb - 300 MB/s

6.0Gb - 600 MB/s
266 Medusa Labs Test Tools Suite

Glossary
267

Glossary

Big Endian Big Endian is the order in which bytes are arranged. When using multiple
bytes, you must identify their order. This is similar to identifying the order of
bits by LSB and MSB. The term big endian is a term used by designers of
computer processors to identify data in the following order.

Block A unit equivalent to the specified buffer (I/O) size. This term is used to
describe the I/Os used to run the length of the specified file size. For example, a
1MB file would be comprised of 16 total 64k blocks.

Buffer Size (I/O Size) The size (length) in bytes of the data sequence to be written or read in an
operation. This is the size requested at the application level and does not
necessarily correlate to the actual transfer size sent to the target device. The
operating system or an underlying device driver will likely break a large I/O
size down into several smaller I/O transactions.

Data Pattern The payload sent to the target in each I/O operation. Data patterns are typically
a sequence of raw data that result in signal aggravation of specific system
components, bus, or serial architectures.

File Size Used in a couple of different ways in the context of MLTT. When the tools are
used on a file system, file size refers to the size of the file used by each worker
(thread.) When the tools are used on a physical or logical device, file size refers
to the extent of space accessed by each worker on the device.

Flag A flag generically refers to an option passed to an I/O operation (for example,
the cache options available on the -R and -W switches.)

FOP A file operation is a complete write and read pass through a file or device
extent of the specified file size.
268 Medusa Labs Test Tools Suite

Glossary

Full-Device Coverage An I/O test that covers the full length of a target device. Maim has an I/O mode
(-m18) which will cover the entire length of a target.

For full device coverage -m18, “file size” given in the command has a different
meaning. Internally, it is how far each thread travels for write before rewinding
and doing the reads – then move on to the next “stroke area”. The “File size =
512KB” shown in the log file is the 512KB given in the command line which is
used for the “stroke size”. For non-full device modes, “file size” == “stroke
size”.

“FILE SIZE:” shown in the sample header is the target device size divide by
the number of threads adjusted to fit as multiple of buffer size – it is the total
per-thread contiguous area to be covered, and it should correspond to the LBA
range shown per thread.

Initiator A computer system running any supported operating system and MLTT.

I/O A single command (write or read) issued to a device. An I/O is active or
pending from the time the command is issued until status is returned or the
command is aborted.

LBA Logical block address.

Miscompare
(Data Corruption)

A miscompare occurs when the value of a sequence of data reads back
differently than it was written. At some point in the data transfer, the data was
somehow corrupted so the write data and the read data do not match.

There are two primary types of data corruptions: Write corruption and read
corruption.

Write corruption is indicated by the a case where every subsequent read
of the data produces the same corrupted data. This is a result of the data
being committed to the media in a corrupted state. In this case, the
corruption occurred at some point during the write data transfer.

Read corruption is indicated when the initial read of the data is returned
in a corrupted state, but a subsequent read produces the correct data. The
data was corrupted at some point during the first read. When the data is
read back again, the correct data is returned because the write operation
successfully committed the data to media. It is possible for a follow-up
read to return corrupted data and still be a case of read corruption. In a rare
case like this, the follow-up read may return data that is corrupted in a
different manner from the first read.
Medusa Labs Test Tools Suite 269

Glossary

Queue Depth Queue depth refers to the number of I/O operations (write or read) that are
pending at any given time. An I/O is considered to be pending from the time
the command is sent until status is received or the command is aborted.
Generically, the thread count in synchronous tools such as Pain, correlates to
queue depth. In the asynchronous tools, queue depth is specified on the
command line.

Random Access Random access refers to I/O operations across a device at randomly selected
offsets.

Secure Erase The Secure Erase configuration editor erases the data on a Solid State Drive
leaving it in a clean state after the test process using the configuration is
complete.

SMART Retrieves Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.)
attributes and status from target devices and logs them.

SSD Solid State Drive

Target Any physical or logical device that is addressable by an operating system as a
storage device. Examples include a local hard drive, a network share, or a SAN
storage controller. The target is specified to MLTT with the -f switch. The Pain
tool also has a memory-only mode where system memory is used as the target
for host bus or memory subsystem testing.

Thread I/O workers are executed in the context of threads within the tool processes.
The number of workers or threads depends on the specific tool. Pain utilizes a
single I/O per thread architecture. Maim uses a single thread per target by
default but more can be specified with -t switch.

Trigger MLTT has built-in functionality for send a special write command with a data
sequence that can be used to trigger a protocol analyzer. This feature is enabled
with the -! or -# switches.

Trim The SSD Trim configuration erases specified data blocks. It may be run as a
target Solid State Drive pre-conditioning step before running I/O tests.

Walking Pattern A walking pattern is a data pattern than increments or decrements a value a bit
at a time, for example, 0x01, 0x02, 0x03...0xFF.
270 Medusa Labs Test Tools Suite

Index
271

Index

Symbols

-! Enable Analyzer trigger writes (command line switch),
180

-? online help switch, 141, 213

-@ (specified data pattern), 202

-# Enable Analyzer trigger writes (command line switch),
180

-% I/O profile specification (command line switch), 158

% range deviation, 68, 92

% slope deviation, 68, 92

Numbers
0 SUCCESS exit code, 263

1 LOOP_DONE exit code, 263

10 CLOSE_ERROR exit code, 264

11 READ_ERROR exit code, 264

12 WRITE_ERROR exit code, 264

13 CORRUPT_ERROR exit code, 264

14 INITIAL_ERROR exit code, 264

15 REMOVE_ERROR exit code, 264

16 UNKNOWN_ERROR exit code, 264

17 TIMEOUT_ERROR exit code, 264

18 LICENSE_ERROR exit code, 264

19 IOCTL_ERROR exit code, 264

2 STARTUP_ERROR exit code, 263

20 HALT_ERROR exit code, 264

3 MALLOC_ERROR exit code, 263

4 LOG_ERROR exit code, 263

5 SEEK_ERROR exit code, 263

6 RETRY_ERROR exit code, 263

7 SIZE_ERROR exit code, 263

8 OPEN_ERROR exit code, 263

9 FLUSH_ERROR exit code, 263

A
-a Auto-mode (Catapult switch), 208

-A default session ID (command line switch), 141

about, 27

add a new configuration to the test plan button, 35

advanced I/O tab, 75, 104

advanced mode, 92

all threads issue I/Os to same offsets, 168

Analyzer triggers, 181

-aseconds, 208

auto mode duration, 208

B

-b buffer size (command line switch), 149

-b Log retrieval (Catapult switch), 208

-B sequential I/O direction control (command line switch),
150

basic mode, 92

big endian, 268

binary preview tab, 78, 89, 107, 116

blink pattern, custom, 199

block, 268

buffer size, 268

buffer size switch, 149

burst and static tabs, 56, 57

burst mode interval switch, 151

C
-c Clean Directories (Catapult switch), 209

-c commit or flush data (command line switch), 150

-C comparison mode (command line switch), 176

--cap limit I/O throughput (command line switch), 162

Catapult
basis usage, 204
scripting, 233
switches, 207 to 232

-? online help, 213
-a Auto-mode, 208
-b Log retrieval, 208
-c Clean Directories, 209
-d Delay Test Start, 210
-e Increment Data Pattern, 211
-f File system access, 212
-g Change directory prefix, 213
-h online help, 213
-i Include drive, 214
-j Limit inquiry ioctls, 215
-k Kill tool processes, 215
-l Logical drive access, 216
-m Minimize tool windows, 217
-n Enable prompts, 217
-now Run all tests with no windows, 218
-o Override drive signature check, 218
--off Offline disk, 219
--on Online disk, 219
-p Physical drive access, 220
-q Removes excluded drives, 221
-r remote access, 222
--restart-service, 224
-s Set tool starting offset, 225
-t Multi-target Mode, 226
-v Verify mode, 227
272 Medusa Labs Test Tools Suite

Index

-w Watch mode, 229
-x Exclude drive, 230
-y Specify grace period, 231
-z Debug mode, 232

clear directories, 209

CLOSE_ERROR exit code, 247, 264

collect latency histogram switch, 144

comm switch, 158

comma-delimited performance log, 184

command line
switches, 123 to 182

-! Enable Analyzer trigger writes, 180
-? online help, 141
-# Enable Analyzer trigger writes, 180
-A default session ID, 141
-b buffer size, 149
-B sequential I/O direction control, 150
-c commit or flush data, 150
-C comparison mode, 176
--cap limit I/O throughput, 162
-D display data the pattern, 170
-d test duration in seconds, 137
-e custom blink pattern modifier, 171
-E custom blink pattern modifier for walking bit

variations, 171
-F custom blink pattern modifier, 172
-f target, 164
File Size, 163
--full-device run to entire target device, 168
-g burst mode interval, 151
-h online help, 141
-H time to wait before retrying I/O operation, 179
--handler specify custom error handling, 181
-I invert data pattern, 172
-i number of iterations, 138
-j data scrambling mode, 173
-J data scrambling mode reset interval, 173
-L number of times to repeat data pattern, 174
-l specify data pattern number, 172
--latency-histogram collect latency histogram, 144
-m I/O call method mode number, 151
-M I/O monitoring mode, 179
-n disable data corruption checking, 177
-N disable data pattern reversals, 174
-o keep target device or file open, 166
-O override device base offset, 166
-P modify data patterns with phase shift, 175
--perf-mode performance-optimized mode, 162
-q control displayed information, 138
-Q queue depth, 153
-R read buffering mode, 154
-r read-only mode, 153
-ro read-only with one write pass, 154

-S second to delay between thread creation, 139
-s single sector I/O mode, 155
--sample-delay specify sample delay, 140
--scsi direct SCSI command for read/write, 161
--secure-erase perform secure erase, 145
--skip sequential I/O skip size, 161
--steady-state determine steady state, 142
-T set I/O thread/CPU affinity, 139
-t thread count, 156
--trim send trim to target, 147
-u disable unique I/O marks, 177
-U I/O signature timestamp units, 142
-V reverify existing data to a specified data pattern,

178
-v verify retry count, 180
-W write buffering mode, 157
-w write-only mode, 156
-x comm, 158
-x multi-share mode 1, 167
-X multi-share mode 2, 168
-y create data pattern based on various lengths, 175
-Y seconds between performance samples, 140
-Z license client operation, 145

command lines tab, 79, 90, 96, 97, 108, 117, 118, 120, 122

comments tab, 79, 89, 96, 97, 108, 116, 118, 120, 122

commit or flush data switch, 150

comparison mode switch, 176

configuration chooser window, 63

configuration editor, 44, 61 to 122
custom, 66 to 79
integrity, 80 to 90
network CLI, 118
performance, 91 to 96
socket, 98 to 108
SSD secure erase, 119
SSD trim, 121
storage CLI, 97
TCP App, 109 to 117

configuration, selecting or creating, 21

configurations area, 32

control displayed information switch, 138

CORRUPT_ERROR exit code, 247, 264

coverage, full-stroke/random, 269, 270

create
a new configuration button, 32, 62
a new folder button, 32
a new test plan button, 35
the configuration, 21

create data pattern based on various lengths switch, 175

custom
configuration editor, 66 to 79
Medusa Labs Test Tools Suite 273

Index

custom blink pattern modifier for walking bit variations
switch, 171

custom blink pattern modifier switch, 171, 172

custom blink pattern switch, 199

cycle length, 195

D

-d Delay Test Start (Catapult switch), 210

-D display data the pattern (command line switch), 170

-d test duration in seconds (command line switch), 137

data
corruption (miscompare), 269
pattern, 268

data pattern, incrementing a, 211

data scrambling mode reset interval switch, 173

data scrambling mode switch, 173

debug example, 245

debug mode switch, 232

default session ID switch, 141

delay test start, 210

deleting test plan history, 22

depth, queue, 270

description tab, 54

determine steady state switch, 142

deviation
% range, 68, 92
% slope, 68, 92

direct SCSI command for read/write switch, 161

direction control mode, 150

disable data corruption checking switch, 177

disable data pattern reversals switch, 174

disable unique I/O marks (signatures) switch, 177

display data the pattern switch, 170

displaying highest value on graph, 57

displaying values on line graphs, 58

-dseconds, 210

duration, test, 137, 208

E

-e custom blink pattern modifier (command line switch),
171

-E custom blink pattern modifier for walking bit variations
(command line switch), 171

-e Increment Data Pattern (Catapult switch), 211

-ebit_length, 199

-Ehold_cycles, 200

Enable Analyzer trigger writes switch, 180

enable prompts, 217

environment variable, PATTERN, 211

erase, secure, 270

error log, 184, 186

exclude drive switch, 230

exit, 26

exit codes, 261 to 264

export
selected configurations, 26
selected test plans, 26
test summaries, 22

F

-F, 201

-F custom blink pattern modifier (command line switch),
172

-f File system access (Catapult switch), 212

-f target (command line switch), 164

file
operation (FOP), 268
size, 268
system access, 212

File menu, 25

File Size (command line switch), 163

firewall, 15

flag, 268

FLUSH_ERROR exit code, 247, 263

--full-device run to entire target device (command line
switch), 168

full-stroke coverage, 269

G

-g burst mode interval (command line switch), 151

-g Change directory prefix (Catapult switch), 213

general status log, 184

generate license .dat file, 26

GetKey utility, 7, 10, 12

graph
graphing options, 55
legends, 57
tab, 55
view pane, 48

GUI window, 20, 23

H
-h online help switch, 141, 213
274 Medusa Labs Test Tools Suite

Index

-H time to wait before retrying I/O operation (command
line switch), 179

HALT_ERROR exit code, 247, 264

--handler specify custom error handling (command line
switch), 181

help menu, 27

hexadecimal preview tab, 78, 89, 107, 116

highest value on graph, 57

histogram tab, 60

histogram, latency, 67

history
deleting test plan, 22
information pane, 53
summaries information pane, 53
summaries pane, 51
tests information pane, 53
tests pane, 52

I

-i Include drive (Catapult switch), 214

-I invert data pattern (command line switch), 172

-i number of iterations (command line switch), 138

I/O
Behavior tab, 72, 84, 102
Payload tab, 68, 81, 99
signatures, 257 to 259

I/O call method mode number switch, 151

I/O latency (steady state), 68, 92

I/O monitoring mode switch, 179

I/O signature timestamp units switch, 142

-iinclude_list, 214

import
configurations, 25
histories, 25
test plans, 25

include drives switch, 214

increment data patterns, 211

INITIAL_ERROR exit code, 247, 264

initiator, 269

install license from file, 26

integrity configuration editor, 80 to 90

invert data pattern switch, 172

IOCTL_ERROR exit code, 247, 264

IOPS (steady state), 68, 92

J

-j data scrambling mode (command line switch), 173

-J data scrambling mode reset interval (command line
switch), 173

-j Limit inquiry ioctls (Catapult switch), 215

K

-k Kill tool processes (Catapult switch), 215

keep target device or file open switch, 166

key time limit, 9

L
-l Logical drive access (Catapult switch), 216

-L number of times to repeat data pattern (command line
switch), 174

-l specify data pattern number (command line switch), 172

-l0 (specified data pattern), 202

latency histogram configuration, 67

latency histogram tab, 60

--latency-histogram collect latency histogram (command
line switch), 144

launching the MLTT GUI, 20

LBA, 269

-Lcycle_length, 195

license
key, 8
licensing, 8, 27
remote checkout, 12
requirements, 10

license client operation switch, 145

LICENSE_ERROR exit code, 247, 264

limit I/O throughput switch, 162

limitations, system, 14

line graphs, displaying values, 58

log
comma-delimited, 184
error, 184, 186
general status, 184
performance summary, 184, 185

LOG_ERROR exit code, 247, 263

logical block address, 269

LOOP_DONE exit code, 263

M
-m I/O call method mode number (command line switch),

151

-M I/O monitoring mode (command line switch), 179

-m Minimize tool windows (Catapult switch), 217

Maim, 6, 14, 131, 235, 270
Medusa Labs Test Tools Suite 275

Index

Maim tab, 56

Maim vs Pain tool comparison, 6

main window, 23

MALLOC_ERROR exit code, 247, 263

MBPS (steady state), 68, 92

Medusa Agent, 7

memory utilization, 14

Menu bar, 24

minimize windows, 217

miscompare (data corruption), 269

modify data patterns with phase shift switch, 175

multiple sessions offset, 167

multi-share mode 1 switch, 167

multi-share mode 2 switch, 168

N

-n disable data corruption checking (command line
switch), 177

-N disable data pattern reversals (command line switch),
174

-n Enable prompts (Catapult switch), 217

network CLI configuration editor, 118

-now Run all tests with no windows (Catapult switch), 218

number of iterations switch, 138

number of times to repeat data pattern switch, 174

O

-o keep target device or file open (command line switch),
166

-O override device base offset (command line switch), 166

-o Override drive signature check (Catapult switch), 218

--off Offline disk (Catapult switch), 219

offset, set start, 225

--on Online disk (Catapult switch), 219

online help switch, 141

OPEN_ERROR exit code, 247, 263

operating system restrictions, 15

output, viewing the test, 22

override device base offset switch, 166

P
-P modify data patterns with phase shift (command line

switch), 175

-p Physical drive access (Catapult switch), 220

Pain, 6, 14, 124, 235, 270

Pain tab, 56

Pain vs Maim tool comparison, 6

PATTERN, 211

pattern
editor tab, 76, 87, 114
walking, 270

pattern editor tab, 105

pattern, data, 268

patterns tab, 75, 86, 105

perfbaselinetest.bat, 185

--perf-mode performance-optimized mode (command line
switch), 162

perform secure erase switch, 145

performance
configuration editor, 91 to 96
mode, 69, 81, 93, 99, 110
summary log, 184, 185
test, running the, 22
test, setting up, 20

performance-optimized mode switch, 162

physical drive access, 220, 222

planning group editor, 40

prfgrab.exe, 185

processor utilization, 15

prompts, enable, 217

protocol analyzers, 18

Q

-q control displayed information (command line switch),
138

-Q queue depth (command line switch), 153

-q Removes excluded drives (Catapult switch), 221

queue depth, 270

queue depth switch, 153

R

-R read buffering mode (command line switch), 154

-r read-only mode (command line switch), 153

-r remote access (Catapult switch), 222

random coverage, 270

range deviation, 68, 92

read buffering mode switch, 154

READ_ERROR exit code, 247, 264

Read/Write, Read, and Write tabs, 56

read-only mode switch, 153

read-only with one write pass switch, 154
276 Medusa Labs Test Tools Suite

Index

remote check, license, 12

remote checkout, 10

REMOVE_ERROR exit code, 247, 264

requirements
license, 10
system, 13

--restart-service (Catapult switch), 224

restrictions, operating system, 15

RETRY_ERROR exit code, 263

reverify existing data to a specified data pattern switch,
178

-ro read-only with one write pass (command line switch),
154

run to entire target device switch, 168

running the performance test, 22

S

-S second to delay between thread creation (command line
switch), 139

-s Set tool starting offset (Catapult switch), 225

-s single sector I/O mode (command line switch), 155

--sample-delay specify sample delay (command line
switch), 140

saving graphs, 59

scripting, Catapult, 233

--scsi direct SCSI command for read/write (command line
switch), 161

SE operation tab, 119

second to delay between thread creation switch, 139

seconds between performance samples, 140

secure erase, 119, 270

--secure-erase perform secure erase (command line
switch), 145

SEEK_ERROR exit code, 263

selecting the configuration, 21

selecting the target, 20

send trim to target switch, 147

sequential I/O direction control switch, 150

sequential I/O skip size switch, 161

set I/O thread/CPU affinity switch, 139

setting up performance test, 20

single sector I/O mode switch, 155

SIZE_ERROR exit code, 263

size, buffer, 268

size, file, 268

--skip sequential I/O skip size (command line switch), 161

slope deviation, 68, 92

SMART, 270

SMART monitoring, 169

socket configuration editor, 98 to 108

-soffset_amount, 225

specified data patterns (-y, -IO, -@), 202

specify custom error handling switch, 181

specify data pattern number switch, 172

specify sample delay switch, 140

speedometers pane, 49

SSD, 270

SSD secure erase configuration editor, 119

SSD trim configuration editor, 121

STARTUP_ERROR exit code, 247, 263

steady state, 68, 92

--steady-state determine steady state (command line
switch), 142

Stop button, 22

storage CLI configuration editor, 97

SUCCESS exit code, 263

summary, exporting test, 22

switches, Catapult, 207 to 232

switches, command line, 123 to 182

system limitations, 14

system memory, 14

system requirements, 13

T

-t Multi-target Mode (Catapult switch), 226

-T set I/O thread/CPU affinity (command line switch), 139

-t thread count (command line switch), 156

target, 270
categories section, 29
considerations, 17
selecting the, 20

targets area, 28

TCP App configuration editor, 109 to 117

Test
Analysis tab, 24, 50
Log tab, 59
Planning tab, 24, 28
Running tab, 24, 45

test
list and statistics pane, 46
output, viewing the, 22
plan browser, 37
Medusa Labs Test Tools Suite 277

Index

plan editor, 42
plan history, deleting, 22
plan properties pane, 42
planning, 26
plans area, 34
running, 27
summaries, exporting, 22

test duration in seconds switch, 137

text view pane, 47

thread, 270

thread count switch, 156

time limit, license, 9

time to wait before retrying I/O operation switch, 179

TIMEOUT_ERROR exit code, 247, 264

tool comparison, Pain vs Maim, 6

trigger, 270

triggers, Analyzer, 181

Trim, 121, 270

--trim send trim to target (command line switch), 147

trim tab, 121

U

-u disable unique I/O marks (command line switch), 177

-U I/O signature timestamp units (command line switch),
142

UNKNOWN_ERROR exit code, 247, 264

update remote systems, 25

user’s guide, 27

utilization, processor, 15

V

-V reverify existing data to a specified data pattern
(command line switch), 178

-v Verify mode (Catapult switch), 227

-v verify retry count (command line switch), 180

verify mode switch, 227

verify retry count switch, 180

view menu, 26

view targets button, 28

viewing the test output, 22

vlog.log, 227

W
-w Watch mode (Catapult switch), 229

-W write buffering mode (command line switch), 157

-w write-only mode (command line switch), 156

walking pattern, 270

watch mode switch, 229

windows, minimize, 217

workstation name, 184

write buffering mode switch, 157

WRITE_ERROR exit code, 247, 264

write-only mode switch, 156

WS_NAME, 184

-wwait_seconds, 229

X

-x Exclude drive (Catapult switch), 230

-x multi-share mode 1 (command line switch), 167

-X multi-share mode 2 (command line switch), 168

-xexclude_list, 230

Y
-y create data pattern based on various lengths (command

line switch), 175

-Y seconds between performance samples comm
(command line switch), 140

-y Specify grace period (Catapult switch), 231

-ypattern_value (specified data pattern), 202

Z
-z Debug mode (Catapult switch), 232

-Z license client operation (command line switch), 145

zooming in/zooming out on graphs, 58
278 Medusa Labs Test Tools Suite

Network and Service Enablement Regional Sales

North America
Toll Free: 1 855 ASK JDSU

Latin America
Tel: +55 11 5503 3800

Asia Pacific
Tel: +852 2892 0990

EMEA
Tel: +49 7121 86 2222

www.jdsu.com

Version 7.0
November 2014
English

	Contents
	About this Guide
	What this Guide Contains
	Conventions
	Message Formats
	Typographical Conventions

	About Medusa Labs Test Tools
	What’s New in this Medusa Labs Test Tools Version
	What Medusa Labs Test Tools Does
	How Medusa Labs Test Tools Works
	Pain and Maim Test Tools
	Sock Test Tool
	Catapult Test Tool Automation
	FindLBA Utility
	GetKey Utility
	Medusa Agent
	Licensing
	Licensing Requirements
	Virtual Machine Licensing
	Remote Checkout
	Migrating the MLM License Server

	System Requirements
	System Limitations
	Memory Utilization
	Processor Utilization
	Firewalls
	Operating System Restrictions

	Testing Concepts
	Target Considerations
	Protocol Analyzers
	TraceView Support

	Using the Graphical User Interface
	Using the Medusa Labs Test Tools GUI
	Launching the Medusa Labs Test Tools
	Setting Up a Performance Test

	Medusa Labs Test Tools GUI
	GUI Overview

	Medusa Labs Test Tools Menus
	File Menu
	View Menu
	Help Menu

	Test Planning Tab
	Targets Area
	Configurations Area
	Test Plans Area

	Test Running Tab
	Test List and Statistics Pane
	Text View Pane
	Graph View Pane
	Speedometers Pane

	Test Analysis Tab
	History Summaries Pane
	History Tests Pane
	History Information Pane

	Using the Configuration Editors
	Using the Configuration Editors within the GUI
	New Configuration Button

	Configuration Editors
	Test a Range Controls

	Custom Configuration Editor
	General Tab
	I/O Payload Tab
	I/O Behavior Tab
	Advanced I/O Tab
	Patterns Tab
	Comments Tab
	Command Lines Tab

	Integrity Configuration Editor
	General Tab
	I/O Payload Tab
	I/O Behavior Tab
	Patterns Tab
	Comments Tab
	Command Lines Tab

	Performance Configuration Editor
	General Tab
	I/O Payload Tab
	Comments Tab
	Command Lines Tab

	Storage CLI Configuration Editor
	Command Line Tab
	Comments Tab

	Socket Configuration Editor
	General Tab
	I/O Payload Tab
	I/O Behavior Tab
	Advanced I/O Tab
	Patterns Tab
	Comments Tab
	Command Lines Tab

	TCP App Simulation Configuration Editor
	General Tab
	I/O Payload Tab
	I/O Behavior Tab
	Patterns Tab
	Comments Tab
	Command Lines Tab

	Network CLI Configuration Editor
	Command Line Tab
	Comments Tab

	SSD Secure Erase Configuration Editor
	SE Operation Tab
	Comments Tab
	Command Lines Tab

	SSD Trim Configuration Editor
	Trim Tab
	Comments Tab
	Command Lines Tab

	Using the Command Line Switches
	Syntax
	Basic Switches
	Target Specification
	I/O Size
	File Size
	Queue Depth
	Thread Count
	Data Pattern

	Switches by Category
	General Switches
	Stand-alone Switches
	I/O Characteristic Switches
	Target Related Switches
	Data Pattern Related Switches
	Data Integrity Related Switches
	Error Related Switches

	Logging and Output
	Status Log
	Performance Summary Log
	Comma-delimited Performance Log
	Error Log
	Sample Logs
	Sample Error Log
	Sample Status Log

	Data Pattern Reference
	Overview
	Designed For Signal Aggravation
	Customized Patterns
	Continuously Changing I/O Stream

	Customizing Data Patterns
	Using Pattern Modifiers
	Custom Blink Pattern

	Specified Data Patterns

	Catapult Test Tool Automation
	Basic Usage
	Catapult Switches
	Scripting
	Example 1 (Windows batch file)
	Example 2 (Windows batch file)

	Data Pattern Numbers
	Test Guidelines and Examples
	A Word About Hardware Configurations
	Maximum Bandwidth Stress Testing
	Performance Testing
	Data Integrity Testing
	Backup or Snapshot Testing
	Maximum Queue Testing
	Full Coverage Target Testing

	Debug Example
	Default Trigger Value
	TRIGGER.OUT marks - for CACA trigger

	Locating the Trigger Data Frame in TraceView
	Finding the Write and Read Operations
	Error Log Created
	Finding the Corrupt Data Frame
	Using I/O Signatures
	Using the FindLBA Utility
	Example 1
	Example 2

	I/O Signatures
	Exit Codes
	Exit Code Descriptions

	Architecture Bandwidths
	PCI
	PCI-X
	PCI-Express
	Fibre Channel (Full Duplex)
	Fast Ethernet (Full Duplex)
	Gigabit Ethernet (Full Duplex)
	SAS

	Glossary
	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

